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20. ABSTRACT (continued).

‘ﬁroximity effect. The vanadium carbide precipitates on the {310} habit
planes. According to studies with the transmission electron microscope,
the particles are uniformly distributed throughout the specimen. The
particle size and number depsity is changed by aging the specimens for
fixed amount of time at 350 C.

The present results are based on the study of thirty specimens. A
99.95% pure annealed vanadium specimen was used as a control. The other
vanadium specimens contain 0.1 atomic percent to 0.6 atomic percent carbon.
As a result of metallurgical analy§§§, the mean diameters of the particles
range from less thaﬁ 100 & to 2613°% and the number density of the pinging
centers range from®3.3 x-1012 particles/cm3 to 4.2 x 1011~partic1esfcm ]
The measurement of the superconducting properties lead tg9 values of the
macroscopic pinning force density ranging from 3.34 x 102 dynes/ , to
3;I7—i“¥06‘dynes/ for T -0 K.“\. &

The macroscopic pinning force density is calculated from the Lorentz
force equation. The value of B is numerically equal to H for the geometry
used in this investigation. The value of the critical current density is
determined by a four probe technique. J 1is the value of the current
density at a voltage just large enough t§ be deemed above the noise level
of the signal; in all cases, this voltage is less than or equal to 50 nV.
Attempts were made to correlate the present results with existing fluxoid
pinning theories. None of the theories tried were compatible with the
present work. Therefore, a calculation of the macroscopic pinning force
density based on the concept of an activation volume is performed. This
calculation leads to the proper temperature dependence for F_. However,
the reduced magnetic field dependence of the size of the actBvation volume
cannot be directly calculated. Hence, the calculated F_ cannot be
completely compared to the experimental results. From Bhe method of
investigation used in this study, the reduced magnetic field dependence
of the activation volume cannot be tested.
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Vanadium is a low K Type II superconductor and as a result of this
investigation, it is found that the g?iroscopic pinping force density obeys

= T
[ a scaling law of the form Fp Cp ch (T) h(1 - h)?. The HCZ(T) term

contains all the temperature dependence of the macroscopic pinning force
density. The constant C_ depends on the size and number density of the
pinning centers. If thePnumber of pinning centers whose diameters a is
greater than 2£(T) is above some critical number, the specimen will obey
the scaling law. Here, 2§(T) is the diameter of the fluxoid core at the
temperature T which is the temperature at which the specimen begins to

‘ obey the scaling law. The form factor in- the scaling law equation is then
b only a function of reduced magnetic field. If the number of pinning

| centers whose diameters are greater than 2£(T) is below the critical number
for a given temperature, the specimen does not obey the scaling law and the
form factor is a function of temperature as well as h. If all the particle
diameters is less than 2£(0), then the specimen will not obey the scaling
law at any temperature no matter what the number of pinning centers.
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ABSTRACT

The purpose of this investigation is to study fluxoid pinning in
a Type II superconductor. Vanadium was chosen as the superconductor to
study because it is obtainable'in high purity and its microstructure can
be readily controlled. The pinning centers are formed by introducing
carbon into the vanadium matrix forming vanadium carbide precipitates.
The vanadium carbide precipitates are disc shaped particles whose thick-
ness is only a few atomic layers. The precipitates are likely to be
superconducting when H =»O by reason of the proximity effect. The
vanadium carbide .precipitates on the {310} habit planes} According to
studies with the transmission electron microscope the particles are
uniformly distributed throughout the specimen. The particle size and
number density is changed by aging the specimens for fixed amounts of

time at 350°C.

The present results are based on the study of thirty specimens.
A 99.95% pure annealed vanadium specimen was used as a control. The
other vanadium specimens contain 0.1 atomic percent to 0.6 atomic
percent carbon. As a result of metallurgical analysis the mean dia-
meters of the particles range from less than 100 R to 2613 % and the
number density of the pinning centers range from 3.3 X 16'® particles/aﬂ
to 4.2 x 10'7 particles/cms. The measurement of the superconducting
properties lead to values of the macroscopic pinning force density

ranging from 3.34 x 10" dynes/cm® to 3.17 x 10° dynes/cm® for T = 0 K.
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The macroscopic pinning force density is calculated from the
Lorentz force equation. The value of E is numerically egqual to ﬁ for
the geometry used in this investigation. The value of the critical
current density is determined by a four probe technique, 3c is the
value of the current density at a voltage just large enough to be

deemed above the noise level of the signal, in all cases this voltage

is less than or equal to 50 nV. Attempts were made to correlate the

presentvresults with existing fluxoid pinning theories, None of the
theories tried were compatible with the present work. Therefore, a
calculation of the macroscopic pinning force density based on the |
concept of an aétivation volume is performed. This calculation leads
to the proper temperature dependence for Fp‘ However, the reduced
magnetic field dependence of the size of the activation volume can not
be directly calculated. Hence, the calculated Fp can not be com-
pletely compared to the experimental results. From the method of

investigation used in this study the reduced magnetic field dependence

of the activation volume can not be tested.

Vanadium is a low K Type II superconductor and as a result of this

investigation it is found that the macroscopic pinning force density

; ; obeys a scaling law of the form

3 1
- 2 vy
F =C_ H2, (T) h(1-h)*,

P 2

The HCZ(T) term contains all the temperature dependence of the macro-

E scopic pinning force density of the pinning centers. If the number of




pinning centers/cm length of fluxoid, whose diameters, a, is greater
than 2€(Ts), is above some critical number, the specimen will obey
the scaling law. Here 2£(Ts) is the diameter of the fluxoid core at
the temperature Ts’ which is the temperature at which the specimen
begins to obey the scaling law. The form factor in the scaling law
equation is, thén, only a function of reduced magnetic field. If the
number of pinning centers, whose diameters are greater than ZE(TS),
is below the critical nﬁmber/cm length of fluxoid {20 pinning
center/cm) for a given temperature the specimen does not obey the
scaling law and the form factor is a function of temperature as well
as h. If all the particle diameters are less than 2£(0) then the

specimen will not obey the scaling law at any temperature no matter

what the number of pinning centers.
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I. INTRODUCTION

The purpose of this investigation is to study pinning centers in
a Type II superconductor. If one considers a thin rectangular slab of
ideal Type II superconductor placed in an applied magnetic field, such
that the applied magnetic field is perpendicular to the broad surface
of the specimen, the applied magnetic field will cause magnetic.flux
to enter into the superconductor. In a Type II superconductor, the
magnetic flux will exist in quantized bundles called fluxoids. Consider
now passing a transport current through the specimen in such a manner
that the transpoft current is perpencidular to the applied magnetic
field and parallel to the broad surface of the specimen. A driving
force, which is equal to the Lorentz force, will then act upon the
fluxoids and the fluxoids may begin to move. The fluxoid motion is
impeded by a viscous force. Thus, a pure defect free Type II super-
conductor cannot sustain a lossless current. There is energy dissipation,
since work is being done in moving the fluxoids. In order to make a
Type II superconductor capable of supporting high transport currents,
the motion of the fluxoidsvmust be impeded. This is accomplished by

introducing pinning centers into the Type II superconductor.

Pinning centers may be produced in the supefconductor by one or
more common methods, such as cold working the specimen (1,2,3) or
ion irradiation of the specimen to produce voids (4). Many methods
of producing pinning centers lead to an end product which is quite
useful technologically, but as yet not well understood in terms of a

fundamental interpretation of the basic mechanisms involved.
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The purpose of this work is to study fluxoid pinning in a well

defined and controlled superconducting system. Vanadium was chosen as

& the superconductor to study because it is obtainable in high purity
and its microstructure can be readily controlled. Vanadium also happens

3 to be one of the two known elemental intrinsic Type II superconductors,
niobium being the other. The pinning centers are formed by introducing
carbon into the vanadium matrix forming vanadium carbide precipitates.
The vanadium carbide precipitate provides a well behaved pinning
center: first, the precipitate can be made coherent with the vanadium
lattice, and secogd, the particle size and number density can be con-

trolled by appropriate heat treatment.

Measurements of the superconducting properties and metallurgical
microstructure were carried out on vanadium specimens containing 0.1
atomic percent to 0.6 atomic percent carbon. The upper critical mag-
netic fields ranged from 4.1 kOe to 5.8 kOe. The macroscopic pinning
force density, extrapolated to T = 0 K, varied from 3,34 X 10" dynes/cm3
3.17 X 10° dynes/cms. The mean precipitate diameters varied from
less than 100 & to 2613 &, and the number density of the pinning centers

ranged from 3.3 X 10*° parti'cles/cm3 to 4.2 x 10'7 particles/cms.

The current carrying capability of the superconductor is directly
dependent on the effectiveness of the pinning centers. The pinning
+ =
centers provide a macroscopic pinning force density, Fp, which counter-
> > > R
acts the Lorentz force, Fy, = J X B/c, on the fluxoids. According to
Bean (5) and Kim et al. (6), when the pinning force exactly balances

the Lorentz force, the specimen is in the critical state, which is given

by




-I:_-»x-»
b Jc B/c . (1.1)

> >
If the critical current density, J_, and the magnetic induction, B, are
known, the pinning force per unit volume can be calculated. The pinning
force is a macroscopic quantity which must be related to the micro-

structure of the specimen (7,8).

Another objective of this study to to see if low K Type II super-

conductors obey a scaling law (9) of the form

= m
Fp = const. ch(T) £(h), (1.2)

where HC is the upper critical magnetic field and the reduced magnetic

2
field, h, is defined as H/H_,. As a result of this investigation, the

form factor, f(h), is found to be given by
f(h) = h(l-h)é P (1.3)
and the exponent in the scaling law, m, is approximately %u The

scaling law becomes

3 1
Fp = const. HZ_(T) h(1-h)?Z . (1.4)
c2

The conditions under which Equation (1.4) is valid are discussed.




II. THEORY

A. Historical Background

A brief historical discussion is presented in order to introduce
the reader to terms and concepts basic to the understanding of fluxoid
pinning in Type II superconductors. Many excellent books have been
written on superconductivity and may be consulted for further details.
On a phenomenological level, Lynton (10) and Kuper (1l1l) give excellent
accounts of superconductivity. In a more theoretical vein, books such
as de Genes (12), Saint~James et al. (13), and Tinkham (14) may be
consulted. Many of the terms and concepts basic to the understanding
of Type II superconductivity are extended from definitions and concepts
first applied to Type I superconductors, since these were studied

first. Thus, the discussion begins with Type I superconductors.

Superconductivity was first observed by Kamerlingh Onnes in 1911
while studying the electrical conductivity of metals at low temperatures.
Kamerlingh Onnes (15,16,17,18) observed that the electrical resistance
of such metals as mercury, lead, and tin went to zero at very well
defined temperatures. The temperature at which the electrical resist-
ance goes to zero‘is called the critical temperature, To + below which
the metal is in tﬁe superconducting state. In the superconducting

state, the specimen shows perfect conductivity.

Meissner and Ochsenfeld (19) observed that the superconducting
state possesses perfect diamagnetism. Perfect diamagnetism cannot
be explained by the assumption that the specimen is a perfect conduc-

tor, for if the specimen is placed in a magnetic field, then cooled




below 'rc , the magnetic flux is expelled from the bulk of the super-
conductor. This is contrary to what one would predict in the limit

of perfect conductivity. On a microscopic scale, however, the magnetic
field penetrates into the superconductor a distance A , the penetration
depth. The magnetic field decays exponentially in this region from H

at the surface to zero in the bulk of the specimen. The superconducting

state can be destroyed by increasing the magnetic field above some crit-
ical value, see Figure 1l.
The critical magnetic field, H,, as a function of temperature is

given approximately by
k. ) 2
HC(T) = HC(O) [1 (T/Tc) 1 c (2.1)

The critical magnetic field is related to the free energy difference
between the normal state and the superconducting state in zero applied
magnetic field (20). The Gibbs free energy per unit volume is

H

G(H,T) = F(T) - iL' B(H)dH S
Wity

(2.2)
F(T) is the Helmholtz free energy of the system in zero magnetic field.
For a bulk superconductor with H < Hc and B =0 ,

GS(H,T) = FS(T) 3 (2.3)

In the normal state, assuming that the magnetic susceptibility is negli-

gible.

L - 2
Gn(H,T) = Fn(T) H°/8T . (2.4)

")
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Figure 1. Magnetig induction, B, as a function of the applied magnetic
field, H, for an ideal Type. I superconductor.




The critical magnetic field as a function of temperature represents
a thermodynamic phase boundary, see Figure 2. On the boundary

Gs(Hc'T) = Gn(Hc,T), thus,

- 1yl
Fn(T) = FS(T) = HC(T)/8H . (2.5)

where Hé(T)/Bn is the energy density associated with the magnetic field.

The difference in the free energy between the normal state and the
superconducting state is called the condensation energy. The conden-
sation energy is of the order -~ (kBTc)z/EF , where EF is the Fermi
energy.

In order to treat the electromagnetic properties of superconduc-

tors, London and London (21) proposed that

<> >

E = AaJs/Bt ; (2.6)
which describes perfect conductivity, and

h=-c x3J (2.7
s

be added to the Maxwell equations. Here, A = m/nse2

is a phenomenol-
s -’ 3 s . i :
ogical parameter, E is the electric field, JS is the supercurrent
->
density, and h is the value of the local magnetic field on a micro-

-
scopic scale. The magnetic induction, B, is the value of the magnetic

>
induction on a macroscopic and scale is given by <h> .

London (22) gave a quantum explanation of the London Equation
->
(2.6) using the vector potential, A. In the absence of an applied mag-
netic field, the ground state would have zero net momentum, <;> = 0

If the wavefunction of the superconducting electron is "rigid" and
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Figure 2. Temperature dependence of the critical magnetic field, H




retains the ground state form even with a magnetic field present, then

the conjugate momentum is given by

<p> = <mv> - eA/c = 0 . (2.8)

Equation (2.8) reduces to
-> >
<vs> = - eA/mc . (2.9)

The supercurrent is then

> -+ 22
J = nse<v > = - nse A/mc i (2.10)

where n_ is the number of superconducting electrons per unit volume.

Now, taking the time derivative of Equation (2.10) yields

-}
oJ ne? >

s _ s 9A
ot mc ot (2.11)

Recall that
-

s L N - 1 3A
E=-V¢ =

In the London gauge, ¢ is constant, thus

.

or

. (2.12)
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This is just Equation (2.6).
Returning to Equation (2.10) and taking the curl of both sides,
one obtains
2
> -»> n & o >
VxgJg = - V xa 8 (2.13)
s mc

->

> >
Making use of the fact that h = V x A, Equation (2.13) reduces to

(]

which is just Equation (2.7) above. Now, taking the curl of both sides

-> > >
of the Maxwell relation V X h = (47/c)J leads to

> =»
U Y (2.14)

O T
VxV X h=—
(] S

-> -> -> > > > ->
Using the vector identity V X V x h = V(Veh) - Vzh, the Maxwell rela-
&> >
tion V*h = 0, and Egquation (2.7), Equation (2.14) becomes

o L oFon
V°h = h/AL . (2:15)

1
where AL = (mc2/4ﬂnse2)§ is called the London penetration depth. For

a semi-infinite slab of superconductor, it can easily be shown that
h(x) = h(0) exp (—x/kL) : (2.16)

Thus, Equation (2.7) leads to the Meissner state for a bulk specimen.
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The superconductors discussed so far are Type I superconductors.
The measured penetration depth for a Type I superconductor is found,
experimentally, to be greater than AL predicted by the London theory.
This along with work on the magnetic field dependence of the penetra-
tion depth and experiments on the inductive and the resistive components
of the surface impedance of tin at microwave frequences led Pippard (23)
to propose replacing the local London theory by a non-local theory where

the supercurrents are given by

;I)]e = R/g d;l

> > >
3¢ R[R*A( : (2.17)
R

2, 12 Y
lem gokL

->
where R=7r-r' and g, is a coherence length which may be estimated
from an uncertainty principle argument (24). The coherence length, & ,

in the presence of scattering has the form

1ok
g = ED % (2.18)

|-

Here, £ , is the normal state electronic mean free path.

Another approach to generalize and extend the concepts of the
London theory was developed by Ginzburg and Landau (25). They intro-
duced a complex order parameter w(;). |l,p(—r>)|2 represents the local
density of superconducting electrons ns(r). This theory takes into
account the spatial variation of n_ and also nonlinear effects due to
magnetic fields strong enough to change the order parameter. The
Ginzburg-Landau theory is limited to small values of | and slow varia-

tions in space. The Gibbs free energy density, Gs , can be expanded as

o e I T L L et L L AT
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-
G, =6 +aly|?+ 8l + é%.|[-rﬁ3 . 3251 w|2 + |hlZer . (2.19)

Gs is the Gibbs free energy in the superconducting state, Gno is the
->

free energy in the normal state in zero applied magnetic field, A is

) . -> -6 > F12 : N
the vector potential, such that h = X A , and Ih] /8T is the magnetic
field energy density.

I1f the free energy is minimized with respect to the order param-
eter and the vector potential, Equation (2.19) reduces to two differ-

ential equations:

-
e 2en|? g
= [-mﬁ = —c——J Y+ BJY|? = - a(m) ¥ (2.20)
and
w gﬁ => > 4e2 2 >
g = o WVl - i) - —=— Y|P . (2.21)

In the absence of an applied magnetic field and gradients, the free

energy, Equation (2.19), reduces to

G = alp]|? + % Blul* . (2.22)

=G
S no

For this to be an absolute minimum,

¥i=-a/ . (2.23)

Thus, Equation (2.22) becomes

= e gl
G Gno a“/28 ¥ (2.24)
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Now, using Equation (2.5), one obtains

[X)
-

S (2.25)

e
g

c = v
In the perfect Meissner state, A = 0. The solution of the free energy

for this state is
lp &= ‘po = (-a/B)% . (2-26)

a is a negative guantity for T < Tc and vanishes at T = Tc ; however,

‘the slope do/dT remains finite at T =T .

c

For very weak magnetic fields, the order parameter varies very
slowly with distance. The variation of the order parameter can be
found from Equation (2.20) by setting K = 0 and introducing a new func-

tion, the relative order parameter,
£ =9V, . (2.27)
Equation (2.20) becomes

,ﬁz

e M g2e o el -
200 (T) Vg £° + £ 0 . (2.28)

Now if a new characteristic length called the temperature dependent

coherence length is defined as
£y =4¥ama(ry (2.29)
Equation (2.28) becomes

-E2MmVit -3+ £=0 .

SRR T L el B LR EUJRE TR TR . j




The temperature dependent coherence length is the range over which £

varies from O to 1.

Consider the current Eqguation (2.21). lez can be replaced by wz
-
for weak magnetic fields and, to first order in h, Equation (2.21)

becomes

o 2
7 = g%.(¢*v¢ = wﬁwr) 0 ﬁS_.wi 2. (2,300

S mc

Taking the curl of Equation (2.30) leads to

This is equivalent to the London Equation (2.7) with a penetration

depth given by

Nl

2
Xiry = -2 3 (2.31)

2,2
léme Yy
If the number of superconducting electrons, n_ is equal to 4w§ :
Equation (2.31) reduces to the London penetration depth AL(O). This
temperature dependent penetration depth A(T), determines the distance
over which the magnetic field, h, varies from its maximum value to l/e

of its maximum value.

The Ginzburg-Landau equations are valid only near the transition
temperature where £(T) >> £, . Also this theory yields a local relation
between the current and the vector potential. For constant |¢| and a
small value of K, the current depends on the vector potential over a }

= -»> -b, a
distance Ir -y ] ~ Eo in a pure superconductor. The local approx-
> : : v
imation is valid if h and A are slowly varying functions over distances ]

of the order £, . For this to be true A(T) >> 8¢ »

(TR YRR T e TR W TR “ N ﬂ
o 2 sl " . L o '“I—L‘ 2 & ' ahi ¢
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The ratio of the penetration depth, A(T), to the temperature de-

pendent coherence length, £(T), defines the Ginzburg-Landau parameter

>
P

,l,

T)
T . (2.32)

Y

This parameter is rather temperature insensitive since, as 'I‘c is

approached, both A(T) and £(T) diverge in the same way.

Type I superconductors have values of K less than l/JE . Type I
superconductors show an intermediate state that is geometry dependent (26).
Consider a sphere of Type I superconducting material placed in an exter-
nal magnetic field much less than the critical magnetic field, H,- The
magnetic field will be expelled from the bulk of the specimen and the
specimen will be in the Meissner state. Now, if the applied magnetic
field is increased to (l—D)Hc , where D is the demagnetizing factor, the
magnetic flux expelled from the bulk of the specimen will cause the
local magnetic field at the equator to be greater than H, . When this
occurs, the specimen enters into the intermediate state. The inter-
mediate state is the coexistence of regions in the Meissner state and
of regions in the normal state which carry the magnetic flux. There is

a positive surface energy associated with the boundary between the normal

state and the Meissner state. Physically, a positive energy per unit
area, ~ § Hé/Bn , is associated with the variation of the order param-
eter, while there is a negative energy per unit area, ~ A Hé/Bn , assoc-

. iated with reducing the diamagnetic energy (27). Therefore, as long as

K < I/JE, there is a total positive energy associated with the normal-

¥ superconducting interface.

A A WL T A bmet ihatir s 0 T R SRR



Bardeen, Cooper and Schrieffer (28) developed a microscopic
theory of superconductivity based on the pairing of electrons through
a phonon mediated interaction. These paired electrons, called Cooper
pairs, have a spatial extension of £, ; this is the same £, as used
in the Pippérd non-local theory. The formation of the pairs of elec-
trons in the condinsed state is related to the existence of a gap in
the low energy excitation spectrum for a superconductor. The gap

energy, 2A , is related to the energy, € needed to create an

eh '

electron-hole pair close to the Fermi surfrce, i.e.,

Eeh 2 2A 5

The coherence leggth, Eo , is related to the energy gap. Because an
electron-hole pair is created, certain values of the momenta are for-
bidden. The forbidden values of the momenta are related to the energy
condition

‘ﬁpz <
EF"AS"Z—m—-EF+A 3 (2.33)

The coherence length is related to the uncertainty in the momenta by
€, 6p ~h

thus,
€0='ﬁ/5p ’

where 8p = Pp A/EF . Then,

£, e =2 (2.34)

TR W
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The factor 1/m is arbitrary and is chosen for convenience. vF is

the Fermi velocity.
Gor‘kov (29) showed that the Ginzburg-~Landau phenomenological

approach is a limiting form of the BCS microscopic theory.

In a 1957 paper, Abrikosov (30), who was extending the work of
Ginzburg and Landau, developed the theory of Type II superconductors.
Ginzburg and Landau anticipated a laminar structure for the inter-
mediate state of a superconductor with low values of K , i.e., Type
I superconductors. This is because the gain in the free energy due
to the penetration of the magnetic field, H > Hc , must be balanced
against the positive surface energy which is a result of creating a
normal-superconducting interface. For values of K > 1//5 , the sur-
face energy is negative. K = 1/V/2 is the value of K which separates
Type I superconductors from Type II superconductors. As long as

K > 1/¥2 , negative surface energy causes the maximum amount of sur- |

face area between superconducting and normal regions to be created.

g The subdivision into small regions of normal material carrying the
magnetic flux is limited by the quantum nature of the magnetic flux.

T Each fluxoid containing one quantum of magnetic flux has a normal core,
.’ the diameter of which extends over a distance of twice the temperature
- dependent coherence length, £(T). The' flux quantum, ¢, » is equal to

hc/2e or 2.07 X 10”7 gauss-cm? .

. In the case of a zero demagnetizing factor, the external magnetic
field is expelled from the Type II superconductor for applied magnetic

i fields lower than some critical value, Hcl , see Figure 3. Above Hcl '

& the magnetic field begins to penetrate into the superconductor in

R trlanlons, e gt atengbon coMimov: oo
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Figure 3. Magnetic induction, B, as a function of the applied magnetic
field, H, for an ideal Type II superconductor.




quantized units of magnetic flux. 1In this mixed state, the fluxoids
establish a fluxoid lattice (30,31,32,33,34,35). This fluxoid lattice
compresses as the external magnetic field is increased until the normal
cores of the fluxoids are 2.5 £ (T) apart. This defines the upper
critical magnetic field, H,, . For applied magnetic fields greater

than Hc » the specimen is in the normal state.

2

B. Magnetization Considerations

An important guestion arises as to whether the applied magnetic
field, ; , is numerically equal to the magnetic induction, E , in the
calculation of the macroscopic pinning force density. When a magnetic
field is applied to a Type II superconductor with a demégnetizing
factor, D # 0, the magnetic field penetrates into the superconductor
if the applied magnetic field exceeds (1-D)HCl . In a Type I1 super-
conductor with K >> 1 and D > 0 , the Ginzburg-Landau theory predicts
a mixed state if H > (l-D)Hcl and the magnetic flux is dispersed
throughout the superconductor in the smallest units possible, con-

sistent with the quantum nature of the flux (26,36,37).

For the geometry of the specimens used in this investigation, the
demagnetizing factor is approximately one (38). This leads to magnetic
flux penetration into the specimen for any value of the applied magnetic

field. The magnetic induction, in Gaussian units, is given by
> >
B =H + (1-D)4mM . (2.33)

-5
Here M is the magnetization and D = 1; thus Equation (2.33) becomes

(39,40)

> -+
B(gauss) * H(oersted) v
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C. Nature of the Driving Force

One can show, using thermodynamic arguments, that the driving
force on the fluxoid is equal to the Lorentz force (41,42,12). Con-
sider a superconducting specimen in an applied magnetic field, E , as
in Figure 4. The applied magnetic field produces a fluxoid lattice
inside the superconductor. If a transport current is passed through
the superconductor, the current will cause a gradient in the magnetic
field across the specimen. The fluxoids will tend to move in the

>
direction opposite the gradient in the magnetic induction, B.

The pressure may be calculated by considering n fluxoids inter- |
secting a surface, A, in the x-y plane. The Gibbs free energy per unit

thickness (12)

G=a , (2.34)

where G = F - BH/4T . The free energy, F, contains the interactions

and self energies of the fluxoids. The Helmholtz free energy is

F=U-Ts + H2/8T .

The differential internal energy for a magnetic system is given by
du = TdS - PAV + HAM '

where M is the magnetization of the specimen. Hence the differential

Helmholtz free energy becomes
dF = - SAdT - PAV + HAM + HdAH/4T (2.35)

§! Since B = H + 4mM, and dM = (dB - dH)/4m , Equation (2.35) becomes
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Figure 4.
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Schematic representation of the flux creep experiment.
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dF = - SdT - PAV + HdB/4m . (2.36)

Thus, the differential of the Gibbs function is
dG = - SAdT - PAV - BdAH/4T . (2.37)

The pressure is given by (12)
g (%g] .  (2.38) 1;
T,H

If the fluxoids are locked to the pinning sites and the number of
fluxoids is constant, then changing the density of fluxoids is equiv-

alent to mechanical work and one may talk about a pressure. Making use

of Equation (2.34), Equation (2.38) becomes

SO - e B
pmag— [BA] = -G A . (2.39)

The Gibbs energy is a function of T, A, and H. If the number of fluxoids E

is fixed, one can make a transformation which takes
G(T,A,H) = G'(T,B,H) .

The constraint is n = BA/¢, . Then, the derivative with respect to A
in Equation (2.39) can be replaced by a derivative with respect to B,

i.e.,

A 9G(T,A,H) _ A 9B 93G'(T,B,H)
oA TN oB i

Making use of the constraint, n = BA/¢, .

R PRG Tt o hmel A sran L5 400 3K st 8 " .
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Substituting this back in Equation (2.40), one obtains

A 9G(T,A,H) _ _ B 9G'(T,B,H)
oA oB :

Thus, Equation (2.39) with P as a function of T, B, and H becomes

PR e B <
P = G + 3B
The equilibrium value of B is obtained from the condition 3G’ /0B =
therefore
3G’ 0 OF(B) _ H
dB oB 4m
or
F@ _ H
9B 4m

The pressure gradient can be written as (12)

B92G’ 9B

op’ _ _ 3G' _ 9B oG’ 9B
gt o

% ~ %y 3y s

which reduces to

op’ _ Bd%G’' 3B

ay 5B dy
Since 3%G’'/dB? = 392F/3B2 , the pressure gradient can be written as

3P’ _ B 3(JF/3B)
oy dy

Making use of Equation (2.41), Equation (2.42) becomes

0 ;

(2.41)

(2.42)
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The driving force per unit volume, FD

, 1s equal to the pressure
gradient but in the opposite direction. Using the Maxwell relation
-»> e > ok

V X H= (47/c)J , the driving force per unit volume is equal to the

Lorentz force per unit volume, i.e.,

Gy
X
W

->
=% . (2.43)

; &
i L

D

o}

D. Fluxoid Pinning |

In the case of static pinning, the defining criterion for the
->
critical current density, Jc , is that the Lorentz force, or driving
force, on the fluxoids, per unit volume of specimen, equals the macro- *

. >
scopic pinning force density, Fp peitient,

> >
iy S ol B et . (2.44)
b

In the present investigation, the applied magnetic field is perpendic-
ular to the broad surface of the superconducting specimen. A transport
current is passed through the superconductor in such a way that the
current is perpendicular to the applied magnetic field and parallel to
the broad surface of the superconductor, as shown in Fiqure 4. The
fluxoids will move in a transverse direction under the influence of a
driving force equal to FL' The fluxoids moving across the superconductor
generate a longitudinal voltage proportional to the average creep veloc-
ity. This is analogous to the flux flow situation treated by Kim et al.

(6,43,44,45,46) and Bardeen and Stephen (47).

Anderson (48) and Anderson and Kim (49) assumed that flux creep

occurred by bundles of fluxoids jumping between adjacent pinning centers.

GT is the activation energy which is the increase in the energy of the

AT A s TR L Dae L e )




system when the fluxoid bundle is at a saddle point between two posi-
tions where the energy is at a local minimum. In the absence of any

gradient in the magnetic induction, the fluxoid is just as likely to

jump in one direction as another. There is no net creep velocity,

see Figure 5a.

When an external magnetic field is applied perpendicular to the
specimen's broad surface, a fluxoid lattice is formed. If a transport

current is passed through the specimen, a gradient in the magnetic

T Ty T rarw—

induction is created; thus, a fluxoid will have a tendency to jump
in the direction of decreasing fluxoid density. The change in the
energy barrier height is equal to the work done by the driving force,

=5
FL acting through a distance equal to the width of the barrier, see

Figure 5b.

A general pinning center is described in terms of an interaction

potential with a maximum energy, Up , and an effective width or range,
XP . This leads to an interaction force, fp , between the fluxoid and

the pinning center. The interaction force is given by
f =U/X . 2.45
P P/ p . :

Schematically, fluxoid pinning can be represented as in Figure 6. The
spatial variation of the order parameter |y ,|? , which is directly
related to the number density of superconducting electrons, is zero at
the center of each fluxoid. The pinning center either enhances or
inhibits the formation of the Cooper pairs. If the Cooper pair forma-
tion is inhibited by the pinning center, the fluxoid core, which already

has a lower density of Cooper pairs, is attracted to the pinning center.

ST A L o R e O U
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Figure 5.
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Schematic model for flux creep. a) U, , the barrier height,
b) the Lorentz force on the fluxoids will result in the
tilting of the energy barrier.
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i Figure 6. Schematic diagram of fluxoid pinning.
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If, on the other hand, Cooper pair formation is enhanced by the pres-~
ence of the pinning center, the fluxoid will be repelled from the

pinning center.

The fluxoid motion involves activated jumps at a rate given by (8)
R = R, exp (-GT/kBT) & (2.46)

The activation energy, G_ , is not equal to the pinning energy in the

T
presence of a transport current, but is reduced by the action of the

Iorentz force: thus,
G =U - JBV X /c (2.47
o 5 o p/ ' )

where Vp can be identified as the activation volume. The activation

> >
volume is the region where the Lorentz force per unit volume, J X B/c,

> >
is transferred to the activation barrier so that the force VPJ X B/c
is acting on the barrier during the activation event. xp is the ef-

fective width of the pinning energy potential.

4 The electric field associated with the fluxoid motion is given by

(46)

>

2 £ w v, He . (2.48)

The difference between the flux creep region, considered here, and the

flux flow region is the magnitude of the electric field involved. 1In

the flux flow region, E ~ i 1o V/cm, whereas in the flux creep region,

; the electric field may be orders of magnitude smaller.

ot Flux creep dominates in the nonlinear region of the I-V traces.

“ A typical I-V trace is shown in Figure 7. 1In the flux flow region,
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Figure 7. The electric field, E, as a function of the transport
current density, 3, through a specimen.
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-> ->
vy and E are determined by a viscous drag force due to quasiparticle

currents in the fluxoid cores. In this region, the velocity of the
fluxoid lattice is so high that the flow is independent of pinning (39).

-+
The viscous force is proportional to 9 and leads to a flow electric

field of the form

E=p.(3-3 (2.49)
=p, @ -3 )

->
where Jf is a threshold current density and Pe is the flow resistivity

which is given by

pf = OnB/ch(T) ' (2.50)
where pn is the normal state resistivity (50). Yamafugi and Irie (7),
L and Willis et al. (51) discuss the dissipation due to pinning in the

flux flow region. The pinning forces are responsible for the threshold
current density and dominate the fluxoid motion for small values of the

electric fields.

Most experiments on fluxoid pinning are performed in the dynamic

T

region, which includes both the flux creep and the flux flow regions,
because the experiments require voltage measurements by electronic

instruments which are sensitive to finite voltages. The minimum de-

tectable voltage levels may be small, in which case one is investi-
gating the flux creep region but not the static region. The critical
state models of fluxoid pinning, however, are derived for the static
pinning case, where there is no net fluxoid motion and where the

Lorentz force is balanced by the pinning forces until the condition

it

that F
i = L

% > >
- Fp is just reached. Once FL exceeds Fp , the system goes




from the static regime to the dynamic regime. The question of whether
one can use the condition
> >
J X B
A gt

N
F = -
P c

in the dynamic regime will now be addressed. The argument presented

here is different than the standard ones presented in the literature.

Consider Equation (2.46), i.e., the rate at which the fluxoids
jump from one pinning site to another pinning site. 1In the case of

static pinning, the rate of fluxoid jumps is given by
R = Ro exp (—Up/kBT) 5 (2.51)

If a transport current is passed through the specimen and FL < Fp' then

the net rate, RN , is given as

s 1
RN = R, exp kBT (Up JBVPXp/c) ' (2.52)

with Up > JBVpxp/c. The critical state is reached when the Lorentz
force exactly balances the pinning force. When this condition is ful-

filled, the rate is given by
R, =R . (2.53)

In the linear flux flow region, the rate is given by

-— __l -
RN = R, exp kBT (Up JBVPXP/C) B (2.54)

with U < JBV Xp/c. In the nonlinear region at a point 3d where an

electric field, E

a’ is just sufficiently large to be observed, a

=M o ke st e sotdbens o g it
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dymamic resistivity, the tangent to the curve, can be defined. This
observable electric field is measured in practice as a "cut off voltage,"

\

q " In this case, it follows that

(J - J.) . (2.55)

The rate is given as

1
RN = R, exp {- kBT (Up - JdBVPxp/c) 7 (2.56)

with U < J. BV X /c since J_ < J
P P c

o q - , the rate can be

Rewriting Ia

written as

3 vaxp
R = R, exp (- T up - - E/Dd) o A (2.57)

At the cut off voltage, Equation (2.57) becomes

1 BV _X
RN = Ro exp { - K;E Up - (g -Ed/pd) _E__Bc e (2.58)
As Ed goes to zero, Equation (2.58) has to reduce to the rate equation

for the static pinning case in the critical state, i.e., Fguation (2.53).
For this to be true, the argument of the exponent of Equation (2.58) must

go to zero, i.e.,

- (J - E = . 2.5
Up ( d/pd) BVpo/c 0 ( 9)

The pinning force is given by

U E.B

p _JB d

F = = — - — o (2.60)
vV X 3

P c cp
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As E, goes to zero and J goes to Jc ., then,

d

Pp = JCB/c ‘

which is the pinning force density in the static case. However, from
Equation (2.60), one can see that for a finite cut off voltage, the

pinning force is

JB EB
B R £t (2.61)
p C de

In the dynamic pinning case, Jd in the above equation is the value of
the critical current at some predetermined voltage cut off. Jq is
actually larger than Ie of the static pinning case. Eq is the electric
field corresponding to the predetermined cut off voltage and pd is the

dynamic resistivity at the value of Jgq -

In a complete fluxoid pinning theory, the parameters of the pinning
model must be related to the parameters of the dynamic pinning case
discussed above. The important parameters associated with the pinning
centers are the interaction energy between a single pinning center and
a single fluxoid, €, the geometrical width of the pinning center paral-
el to the fluxoid, a , and the number density of the pinning centers,
np . These parameters must be related to the dynamic pinning param-
eters: Up » the maximum energy of the interaction potential; xp , the

energy barrier width; and Vb ;, the activation volume.

Beasley et al. (52) present a good discussion of the energy bar-
rier width. If the geometrical width of the pinning center is larger
than the coherence length, £(T), but smaller than the fluxoid lattice

parameter, 4, then,
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X =a . (2.62)

If the geometrical width of the pinning center is larger than the

fluxoid lattice parameter, then,
X =d P (2.63)

because of the periodicity of the fluxoid lattice. Finally, if the
geometrical width of the pinning center is smaller than the temperature

dependent coherence length, then
X =&(1) . (2.64)
= €

This follows because the range of the interaction between a fluxoid
and a pinning center cannot be smaller than the coherence length, which

is the lower range of any interaction.

Certain pinning mechanisms can be eliminated from the discussion.
The vanadium carbide precipitates used as pinning centers in this
experiment are disc shaped particles whose thickness is less than the
superconducting coherence length for the vanadium: thus, the precip-
itate will very likely be superconducting for B = 0 because of the
proximity effect (10). For high values of the reduced magnetic field,
h = H/HCZ(T), the precipitate will act like a surface pinning center,
since the vanadium carbid. precipitate is disc shaped with a diameter
greater than the fluxoid lattice parameter, d. The important parameter
is the surface area of the precipitate perpendicular to the Lorentz
force (53). 1In the low reduced magnetic field region, the diameter of

the precipitate, a, is less than d and the precipitate may act like a

point pinning center (54).
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For superconducﬁors approaching the ILondon limit, Kk = «© , the
pinning is usually attributed to magnetic interactions or core inter-
actions. The selection of which interaction applies is determined by
the size and the spacing of the pinning centers in relation to the
penetration depth, A . The magnetic interaction is due to the change
in the magnetic energy upon crossing the boundary separating the super-
conducting and pinning materials. The regions on either side of the
boundary must be large enough to define a value of B and an equilib-
rium magnetization. If the regions on either side of the boundary are
too small to define a value of B and an equilibrium magnetization, then
one uses the core interaction. The free energy of the fluxoids in the
superconducting matrix is different than the free energy of the fluxoids
with their cores passing through the pinning center. This difference g

in the energy leads to the core interaction (55,42). Because vanadium

is a low K superconductor, the concepts of core interaction and mag-
netic interaction as derived in the literature for high K superconduc-
tors are not applicable and one must use the Ginzburg-Landau express-

ion for the free energy (42).

Upon careful examination of the transmission electron micrographs
of the superconducting specimens no evidence of long-range strain
fields associated with the vanadium carbide precipitates is observed
(56) . Therefore, elastic interactions can be excluded as the main

cause of pinning (57).

The main question in the understanding of fluxoid pinning is how
does one sum over the individual pinning centers and fluxoids to

obtain the macroscopic pinning force density. The summation problem

has met with limited success, and is far from being understood completely.
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If the fluxoids were straight and the fluxoid lattice were com-
pletely rigid, for a high density array of identical pinning centers
no pinning would result. Statistically, the interaction forces tend-
ing to cause the fluxoid to move to the right are balanced by the
forces tending to cause the fluxoids to move to the left. Thus, the
net force on the fluxoid is zero. However, pinning does occur and,
according to Labusch (58,59), localized pinning forces cause inhomoge-
neous deformation of the fluxoid lattice. These inhomogeneous defor-
mations of the fluxoid lattice allows the pinning (60). 1In a dilute
system of pinning centers, the interaction between a single fluxoid
and a single pinning center can be calculated. Using the statistical

approach of Labusch, the macroscopic pinning force density is given by

(57)
n af? 2
§ sl BB Bl (2.65)
P ek % 1
(Cy,Ce)?

The modulus, C for a deformation that tilts the fluxoid lattice

by

away from the z-direction while leaving its cross-section in the x-y

plane constant is given by (59)

_BH
Chu - (2.66)

The shear modulus, Cg¢ , in the x-y plane is given by (59)

2 .2
0.48(1-h) Hoo

Cee = ' (2.67)
8m(2k? - 1) B;

where Ba is a geometrical factor which is equal to 1.16 (13).
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Since the fluxoid lattice has a certain amount of rigidity, all

the pinning centers present in the superconductor will not be equally

effective. Thus, in a dense system of pinning centers, the inter-
action between a single fluxoid and a single pinning center cannot
be calculated and the pinning is provided for by effective pinning
centers. Campbell and Evetts (42) give the condition for a system
of pinning centers to be considered dilute. If the number density
of pinning centers is greater than some critical value, n*, the

system is no longer dilute. n* is given by (42)

n* = (10" X;d)"l 2 (2.68)

where XP is the energy barrier width. To calculate the largest n*

consistent with a dilute array of pinning centers, consider the system

at T = 0, and xp = d. The smallest value of d is near ch where
d ~» £(0): thus Equation (2.68) becomes
n* = [10" £3(0))"! ~ 6 X 10'2 particles/cm® . (2.69)

For Labusch's theory of point pinning centers to be applicable, the
density of pinning centers must be less than the number given by Equa-

tion (2.69).

If the number of pinning centers in the specimen is greater than
n*, one may be able to apply Kramer's line pinning theory (61,62).
In this model, the strain field in the fluxoid lattice due to the
individual pinning centers overlap if the distance between the pinning

centers is less than some critical length (61)
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In the low reduced magnetic field region, the pinning interaction is

overcome by the Lorentz force. The pinning force density is given by

(62)
1
K h?
F (h) = £— 3 (2.71)
(1-h)?
with

3
5 x 10° ppw"* B" “32
K = dynes/cm3 ’ (2.72)

where p is the density of initially strong line pinning centers per

em?, w is the net number of pinning centers of strength, fp . Per unit
length of fluxoid. B and P are constants. In the high reduced magnetic
field region, h > hp , the fluxoid lattice shears around pinning cen-

ters whose interactions are too strong to be broken. hp is the value

A e e EBee—

of the reduced magnetic field at the peak in the pinning force density

curve. The pinning force density is given as (62)

= % Ry 2
Fs(h) = Ksh (1-h) P X (2.73)
with

3
K, = 2csnézué dynes/cm® (2.74)

i where Cs is a number which varies from 0.14 to 0.56 depending on the

density of the pinning centers. According to this theory, the
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macroscopic pinning force density for low values of the reduced mag-

netic field is given as (62)

S 1
2 12 —h) T2
Fp(h) o chh (1-h) h < hp ’ (2.75)

while for high values of reduced magnetic field,

H? h% (1-h)2 h >nh (2.76)
2 e P b 5

1
v
F (h) < H

In both cases, the macroscopic pinning force density is derived from

the elastic energy stored in the fluxoid lattice.

Experimentally, Fietz and Webb (9) have found that the macroscopic
pinning force density for a large number of superconductors obey a

scaling law of the form given by
o m
Fp = Const. ch(T) f (h) s (2:797)

The constant depends on the size distribution and the number density of
the pinning centers. HZZ(T) contains the temperature dependence of the
macroscopic pinning force density. The exponent, m, is obtained from
a plot of the 1ln(F ) as a function of 1n(H .). The form factor,
pmax c2
f(h), depends only on the reduced magnetic field, h. Labusch's and
Kramer's summation methods do not yield the form factor observed in
this investigation. 1In order to obtain the observed value of m, a

summation procedure is developed. First, an expression for the micro-

scopic pinning force is obtained.

According to Campbell and Evetts (42) and Khanha (63), for low K
superconductors, the Ginzburg-Landau expression for the free energy

must be used to calculate the interaction energy. 1In this study, the
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thickness of the precipitates is less than the temperature dependent
coherence length: thus, the proximity effect ensures that the order
parameter does not change very much and perturbation theory may be
used. The change in the Ginzburg-Landau free energy per unit volume

is given by (62)

H SH 2
8
8G(H,T) = 7? - ;;93 £2 4 %--5; £ ’ (2.78)
c2 k2
where f is the unperturbed relative order parameter and GHCZ is the
upper critical magnetic field of the superconductor minus the upper

critical magnetic field of the pinning center. For reduced magnetic

fields high enougﬁ that £2 >> f%, the first term in the square brackets
g

dominates, and

Hz SH,, ;
§G(H,T) = - = 75;? £ ) (2.79)

The mean value of the relative order parameter is given by (42)

2
f2 r 8T K°M ; (2.80)

Hc2

Upon substitution for the magnetization, M, this equation yields

2 H - B
2
£2 = - < : (2.81)

H: 2
c2 |1 + B, (2" - 11J

The largest change 1n Gch would be to let Gch = ch . Then Equation

(2.79) becomes

2k? Hé(l - h)
8G(H,T) = " (2.82)
aml + B (2¢?2 - 1))
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Since Hc2 =2 KHC ., Equation (2.82) reduces to

sz(l - h)
6G(H,T) = - (2.83)

am[l + Ba (2x? - 1))

The interaction energy is the energy difference between the energy of
the fluxoid when it passes through the superconductor without passing

through a pinning center, and the energy of the fluxoid when its core

passes through a pinning center. The interaction energy is given by

£2(T) a H>_(1 ~ h)
€ = €2 ; (2.84)

anil + B 2? - 1)1

where a is the diameter of the precipitate parallel to the fluxoid.

1 The microscopic pinning force, fp, can be obtained from

€
> = (2.85)
P Xp

Hh
1
g8

Substituting Equation (2.84) into Equation (2.85) and letting xp = a

(64) , one obtains

E2(T) HZ. (1 - h)
- £ & o , (2.86)

Posr + B, (2¢* - 1)]

i Ordinarily one would expect to compute the pinning force density
by calculating a summation of all the contributions to Fp by all the
pinning centers involved. No completely satisfactory method of accom-

plishing this summation in a direct way has been found. Hence instead

of using a direct summation, the concept of an activation volume is used.
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This volume is the effective volume of an effective pinning center

for each fluxoid which would accomplish the same pinning as the sum
of all the real individual pinning centers. The fluxoid interacts

with the pinning centers in this volume in such a manner that the

interaction is between the fluxoid and an effective pinning center.

The macroscopic pinning force density is given by

E = : .
P fp/Vp (2.87)

The activation volume, Vp' is given by (57)

V. =X ka , 2.88
S ( )

where k is the distance between effective pinning centers. This is

likely to depend on the magnetic field. The fluxoid lattice parameter,

1 :
4, is given by (¢,/B)2 (13), and letting xp = a (64), Equation (2.88)

becomes

V_ = kad . (2.89)

P
&
- Substituting this and Equation (2.86) into Equation (2.87) one obtains
; ‘! 3 ]

o2 sz h? (1 - h)

3 F = . (2-90)

F P gra[1 + B, ax? - 1)1 %

The macroscopic pinning force density for the specimens used in

this investigation is given by

_ 3 3
Fp = cp HCZ(T) h(l1 - h) . (2.91)

By equating Equation (2.91) with Equation (2.90), one obtains the dis-

tance between effective pinning centers, i.e.,
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7 4
2 (1 -h)
k = (2.92)

gra(l + B_ (2x? ~ 1)lcp né

where Cp is a number which depends on the size and/or the number density

of the pinning centers.

The scaling law observed by Fietz and Webb (9)
F_ = Const. H". (T) £(h)
P * Te2

is adjusted to the particular superconductor in question through the
experimentally determined values of ch(T), m, f£(h), and the constant.
The summation problem, if solved correctly, starts with the micro-
structure of the pinning centers and the basic interaction between a
pinning center and a fluxoid and arrives at the form of the macroscopic

pinning force density given by the scaling law equation.
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III. EXPERIMENTAL PROCEDURES

A. Specimens

The superconducting specimens were prepared and characterized
under the supervision of Professor William R. Bitler of the Metallurgy
Section of the Department of Material Sciences ~»f The Pennsylvania State
University. For details concerning the preparation and characteriza-
tion of the specimens, one may consult Schuyler (56). The vanadium was
obtained from the Materials Research Corporation, Orangeberg, New York.
The original material was in the form of a foil 2.54 cm wide by
2.5x10" % cm Silsk. - e ekl specimen is a well annealed, 99.95%
pure vanadium specimen with a residual resistance ratio of 25. The
other specimens contained 0.1 atomic percent to 0.6 atomic percent
carbon in vanadium. The resistance ratios of the carbon containing

specimens range from 10 to 22.

The carbon containing specimens start as a 99.95% pure vanadium
specimen which is then annealed at 1500°C for one-half hour, just as is
the control specimen. The annealing process is carried out in a vacuum
chamber, typically, the vacuum was in the 107" torr range, with a
magnesium getter to reduce the oxygen and nitrogen partial pressures.
After the specimen is annealed, the carbon, in the form of methane, is
introduced into the bell jar while the specimen is still at an elevated
temperature, approximately 1500°C. The proper amount of methane is
mixed with a hydrogen gas carrier. The mixture is then introduced into
the bell jar. The methane breaks down and the carbon goes into solid

solution in the vanadium. After two minutes, the hydrogen is pumped
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out of the bell jar and the specimen is allowed to cool to room temper-
ature in vacuum. This procedure results in the formation of vanadium
carbide precipitates in the vanadium matrix. If the vanadium carbide
precipitates are to comprise the main type of pinning center in the
specimens, a low lattice dislocation density is required. This is why

all the specimens used in this investigation are annealed first. The

annealing process results in the specimens having large grain size (65).
Also, studies with the transmission electron microscope confirm the

fact that the specimens have very low lattice dislocation densities.

The final specimens are polycrystalline with grain sizes of
approximately 2 mm. Transmission electron micrographs show that the
surfaces of the grains are near to {001} planes and the precipitates

are platelet or disc shaped with a thickness of only a few atomic

3 layers. The vanadium carbide precipitates on the {310} nabit planes.
Thus, if one looks along the [010] direction, the planes of the disc

shaped vanadium carbide precipitates would be at angles of 90°, 71.6°,

b g3

and 18.4° to this direction. The precipitates are coherent with the
vanadium lattice. A coherent particle is one in which the lattice

planes in the precipitate are continuous with the lattice planes of

‘ the nratrix. If the diameter of the solute atoms differ from the diameter
of the solvent atoms, the lattice of the matrix will be strained by the ‘
presence of the precipitate. The strain associated with the precipitate

will enlarge until the lattice of the precipitate breaks away from the

lattice of the matrix. When this occurs, an incoherent grain boundary

is formed between the precipitate and the matrix (66).
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The cross-sectional dimension of the specimen is chosen in order
that a high current density at a low total current flows through the
specimen. The specimens are electrochemically cut to shape. A typical

specimen has dimensions of 1.3x10™ 2

cm by 0.32 cm by 3.8 cm. The speci~
mens are electropolished from the original foil thickness of 2.5x10 2 cm
down to the final thickness, approximately 1.3x10"% cm, in order to

remove any surface contamination and thermally created dislocations on

the surface which often lead to enhanced surface layer superconductivity.

The electrochemical cutting and the electropolishing of the speci-
mens are carried out with the same apparatus. The specimen is mounted
in a metal holder which is placed in a solution of 20% HZSOQ and 80%
methanol. On each side of the specimen, approximately one centimeter
away from the specimen, is a pointed stainless steel electrode. The
specimen is connected to the positive terminal of a dc power supply
while the stainless steel electrodes are connected to the negative
terminal. When the specimen is being electrochemically cut to shape,
the specimen is coated with "Miccrostop stop-off lacquer". A templet
of the desired shape is placed on a lacquer coated specimen and a razor
blade is used to cut a small channel through the lacquer, about one
millimeter wide, around the templet. The templet is removed and the
specimen is placed in the electrolyte. The dc power supply is connected
and maintains seven volts across the system. The cutting operation
takes 2 to 5 hours to complete. Once the specimen is cut to shape, the
lacquer is removed and the specimen is remounted in its holder. The

specimen is placed in the electrolyte and the dc power supply is
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connected. To electropolish the specimen the voltage is maintained at
12 volts for approximately one-half hour. The electrolyte is
maintained at a constant temperature by means of a cooling coil that

is connected to cold running water. The electrolyte is constantly
stirred by means of a magnetic stirrer to reduce the anodic layer which

tends to form (67).

B. Specimen Holder

The specimeﬂ holder is used to suspend the specimen in the center
of a superconducting magnet. The specimen holder is placed in a finger
dewar which is connected to a vacuum pumping system. By adjusting the
pumping speed using a manostat and a system of values, the temperature
of the liquid helium bath surrounding the specimen holder may be

adjusted. Temperatures down to 1.2 K are obtainable.

A schematic representation of the specimen holder is shown in
Figure 8. On the top of the specimen holder is an aluminum electronic
chassis which supports and electrically shields the voltage terminal
and the recording thermometer connector. Also, on the top of the speci-
men holder is a terminal board which contains the helium bath level
resistor terminals, the current terminals, the specimen block heater
terminals, and the regulating thermometer connector for the temperature
control circuit. On the top flange is a pumping port used to evacuate
the vacuum can and a thermalcouple gauge used to monitor the vacuum

can pressure.

The vacuum can is supported on the bottom of the specimen holder by

a single 3/8-inch diameter stainless steel vacuum line. The voltage
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leads and the recording thermometer leads are shielded by a 1/8-inch
diameter stainless steel tube which extends down to the epoxy feed
through. All the leads running to the vacuum can pass through the
liquid helium bath. This insures that there is no appreciable heat
leak down the leads to the specimen block. The leads pass through
epoxy feed throughs into the vacuum can. Stycast epoxy #2850 with
catalyst #9 is used to make the epoxy feed throughs. The feed throughs

proved to be recyclable (68).

The vacuum can has a brass top flange with a four degree taper. A
removable brass cylindrical can has a matching four degree taper. The
vacuum seal is made with Dow Corning 200 fluid, viscosity 60,000

centistokes. After the vacuum seal is made, the specimen holder is

connected to a vacuum pump and the vacuum can is evacuated at room
temperature. This allows the cylindrical can and the top flange to
press toegther and squeeze out the excess Dow Corning 200 fluid. The
excess Dow Corning 200 fluid is wiped off the cylindrical can and the
specimen holder is placed in a dewar. As the vacuum can is continuously
pumped, liquid nitrogen is transferred into the dewar. Once the vacuum
can comes to liquid nitrogen temperature, the vacuum can is sealed off
and the vacuum pump is disconnected from the specimen holder. The
vacuum can is then backfilled with helium gas to approximately atmos-
pheric pressure. The helium gas acts as a transfer gas to help cool
down the specimen block to liquid nitrogen temperature. Once the speci-
men block is at liquid nitrogen temperature, most of the helium gas is

pumped out of the vacuum can. About 1000 microns of helium gas
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is left in the vacuum can. The specimen holder is again removed from
the vacuum pump and is placed in liquid helium. At liquid helium
temperature, there will be approximately 150 microns of transfer gas

in the vacuum can. The vacuum seal is leak tight to liquid helium II.

The specimen block, Figure 9, is constructed from copper. All the
leads are epoxied to the specimen block to minimize direct heat exchange
between the liquid helium bath and the superconducting specimen itself.
The leads are thermally attached to the specimen block by wrapping half
a meter of leads around the specimen block. The leads are then coated
with epoxy to hold them in place. The specimen block contains the
heater, which is a 40 { piece of Nicrome wire; the recording thermometer,
which is a germanium resistance thermometer; the regulating thermometer,
which is a 56  carbon resistor; and fixed position spring loaded volt-

age probes. The superconducting current leads are fastened to the

specimen via indium coated pressure clamps. Superconducting leads are
used to carry the current to the specimen since currents up to 13.5

amperes must be provided and there must be no Joule heating. Any heat

e R A

produced in the current leads would be transferred to the specimen and

this would drastically affect the measured values of the parameters.

The indium coated pressure clamps are recoated each time the specimen

is changed. Because indium is very soft, the pressure clamps produce

a large arca of contact between the specimen and the current lead. This
: lowers the contact resistance. The specimen is electrically insulated

from the copper blocks by teflon sheets 0.011] cm thick.

The specimen holder, as constructed, allows for the possibility of

making ultrasonic attenuation measurements on the specimen. At first,
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Figure 9. Diagram of the specimen block used to determine Jc and T .
c




it was hoped that ultrasonic attenuation measurements could be used as
an independent means of determining ch and Tc of the specimens. How-
ever, all attempts to use ultrasonic attenuation measurements were

unsuccess ful.

C. Temperature Measurement

A Cryo Cal, Inc. #3759 germanium resistance thermometer is used as
the recording thermometer. The recording thermometer has a resistance
of 1 k? at 4.2 K. The thermometer is a four terminal device. A
constant current of 1.1908 UA is driven through the thermometer and the
voltage is measured. The voltage from the thermometer is amplified by
a Hewlett-Packard model 740B Standard/Differential Voltmeter. The
amplified voltage is observed on a four place Digitec model 275A milli-

voltmeter. The resistance of the thermometer is calculated from the

voltage and the constant current. The temperature is obtained from a

calibration plot of the recording thermometer's resistance as a function

of temperature.

The recording thermometer was calibrated in a vacuum can against
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two standard thermometers. The first is a Lake Shore Cryotronic, Inc.

#1676 germanium recsistance thermometer. This thermometer is calibrated
for temperatures from 0.8 K to 4.2 K. The second thermometer is a Cryo q
Cal, Inc. #2290 germanium resistance thermometer. This thermometer is
calibrated for the temperature range 1.5 K to 100 K. The recording

thermometer is calibrated for the temperature range from 1.2 K to 55 K. 3




D. Determination of the Transition Temperature

The transition temperature, TC, is determined from a plot of the
voltage along the specimen, VL' against the voltage across the recording
thermometer which is proportional to the temperature, see Figure 10. A
four probe technique is used. A transport current, large enough to
produce a 1 WV reading on the Keithley 148 Nanovoltmeter when the speci-
men is in the normal state, is passed through the specimen. The
transition temperature is taken as the midpoint of the resistive transi-
tion from the superconducting state to the normal state (69), see
Figure 11. The transition temperature of the specimen is an average

value determined from three increasing temperature plots.

The thermal emfs in the recording thermometer are corrected for by
reversing the direction of the current through the recording thermometer.
The voltage difference between the forward and the reverse direction of
the current through the recording thermometer is typically less than

0.12%.

E. Determination of the Critical Current Density

Figure 12 is a block diagram of the experimental apparatus used to
measure the critical current, Ic. The specimen is maintained at a
predetermined temperature by the temperature control circuit, see
Appendix A. The transverse magnetic field is provided by the super-
conducting magnet, see Appendix B. BAn electronic integrator provides
a sweep signal which drives the current control unit, see Figure 13.

The current passes through a Leeds and Northrup model #4360 (0.1*0.044)
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) sense resistor in series with the specimen. The voltage across the
sense resistor, which is proportional to the current, is plotted on the
x-axis of a Moseley Autograf model 7001AM x-y recorder. The voltage
along the specimen, VL, is amplified and measured by a Keithley model
148 Nanovoltmeter. In earlier investigations, the signal from the
nanovoltmeter was low pass filtered by a Krohn-Heite model 3342 filter
in order to remove the 8 Hz signal produced by the chopper in the nano-
voltmeter. The upper cut off frequency for the filter was 1 Hz. 1In
later experiments, the Krohn-Heite filter was replaced by a passive RC
filter designed to alleviate the 8 Hz problem. The amplifier signal

from the nanovoltmeter is recorded on the y-axis of the x-y recorder.

An increasing current is driven through the specimen, which is in
a fixed transverse magnetic field, as the longitudinal voltage is
recorded across the specimen. The critical depinning current, Ic, is
designated as that transport current at which the voltage across the
length of the specimen, the cut off voltage, is deemed to be above the
noise level on that portion of the curve where the voltage level is zero.
This cut off voltage is always less than 50 nV. The critical current is
obtained using a standard four probe technique. A plot of the longitu-
dinal voltage, VL' as a function of the voltage across the sense
resistor, which is proportional to the current, is shown in Figure 14.
The critical current density is calculated from the critical current by
assuming the transport current is carried by the full cross-sectional

area of the specimen (70,71,36,13,72); thus,

I

C
J = : ‘ (3.1)
(o] cross—-sectional area
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Since each data point should be taken with the same initial condi-

tions (73), the desired magnetic field is applied at zero transport
current. The specimen is heated above its transition temperature and
then cooled through TC in the applied magnetic field. This procedure
produces an unstrained fluxoid lattice (74). Once the temperature of
the specimen returns to the predetermined temperature, the current is
swept and the longitudinal voltage measured across the specimen. The
process is repeated at new applied magnetic field values until the

upper critical magnetic field, ch’ is reached.

F. Determination ég the Upper Critical Magnetic Field

The upper critical magnetic field, ch, is an important parameter.
At the outset of this investigation ultrasonic attenuation techniques
were tried in order to determine ch' The advantage of using ultrasonic
attenuation techniques is that the upper critical magnetic field would

be independent of any transport current phenomena. However, attempts

to this end were unsuccessful because reliable acoustic bonds were

never achieved. Other common possibilities for determining ch have not
1

been completely satisfactory. The method of extrapolating Ji versus

H, as Montgomery and Sampson (75) did for Nb-Sn specimens, leads to ch

values which are much too high. Also, the method of using the nor-

malized resistance versus H to determine ch has led to inconsistent

values of ch. The difficulty is two-fold; the flux flow region makes

the transition at ch difficult to observe and, second, the surface

superconductivity survives up to H(‘3 (76) , thus making a long tail on

R
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the Jc versus H plots. Hc3 is a critical magnetic field above which

even the surface superconductivity is destroyed.

The method of finding ch which was finally used is as follows:
The upper critical magnetic field is determined from a plot of the
normalized pinning force density, Fp/Fpmax' as a function of the applied
magnetic field, see Figure 15. ch is the value of the magnetic field

at which the rapid decrease in F_/F extrapolates to zero. F
P’ pmax pmax

is the maximum value of Fp for a given temperature.
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Figure 15. Normalized pinning force vs. applied magnetic field for the
0.4 atomic percent carbon specimen, aged zero hours. The
temperature is 4.00 K.
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IV. EXPERIMENTAL RESULTS :

A. Introduction

Because of the large number of specimens investigated during the
course of this investigation, the experimental results will be
presented in tabular form with accompanying graphs being representative
of the data. The first two sections of this chapter deal with important
superconducting parameters. The final section is a presentation of the

macroscopic pinning force data and its relation to the metallurgical

parameters of the specimen microstructures.

B. Important Superconducting Parameters

One of the most important parameters is ch(T) since this quantity
is used to scale the magnetic fields. The upper critical magnetic field
is extrapolated to zero temperature using a least-mean-squares fit to

the equation

H (0)(1 - t?)
CcC2

H (t) = (4.1)
2

c (1 + nt?)

as given by Waynert et al. (77). ch(o) and n are the free parameters
which are fit to the data. Figure 16 is a plot of the upper critical
magnetic field as a function of reduced temperature, t = T/TC. The
precision in determining the upper critical magnetic field, ch(O)' is

about five percent.

The Ginzburg-Landau parameter, K, is defined experimentally as

K = KI(T = Tc)' where Kx(t) is given by

N LA e e . LT ST e
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Hc2 (t) (kOe)

| | 1

! 1
00 0.2 0.4 06 08 1.0

Reduced Temperature

Figure 16. The upper critical magnetic field as a function of reduced
temperature for the 0.4 atomic percent carbon specimen,
aged zero hours. The curve is given by equation (4-1) with
ch(o) = 5,8 kOe and n = 0.527.
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C2(t)
K (8) = —2— (4.2)

V2 B (t)
C

Since, both ch(t) and Hc(t) are zero at T = Tc a limiting process must

be used as Tc is approached (78)

el
—£ ; (4.3)

Now, using Equation (4.1) and assuming the normal temperature dependence

{d}!
c2

daT JT
(e

3
Sl

of the thermodynamic critical magnetic field, Hc' Equation (2.1),

Equation (4.3) becomes

H (0)
K (T ) =k = c£2 ; (4.4)
1 ¢

/2 H_(0) (1 + n)

The thermodynamic critical magnetic field is given by

H (0)
H_(0) = —L . (4.5)

VY2 (1 +1n)
According to Goodman (79), K may be expressed as

K-_-Ko +KZ - (4.6)

where Kl depends on the electronic mean free path. In terms of measur-

able quantities,

1
Ky = 7.5 X 10° y?2 P, (4.7)
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where Y, the electronic specific heat coefficient, is 1.179 X 10" erg
em™ deg-2 according to Radebaugh and Keesom (80), and po is the normal

statc residual resistivity in Q~cm. The residual resistivity is given

by

P ~pP ’ ‘4'8)

since the resistance ratios of the specimens involved in this study are

low. p5 o is determined from

p235 is the mean value of the room temperature resistivity of all the
specimens used in this investigation. The mean value of the resis-
tivity is used since there is a large uncertainty in the determination
of the cross-sectional area of any particular specimen. The mean value
of B is 2.19 X 10" ° Q-cm with a standard deviation of 0.27 X 10 °
%-cm. This value of the resistivity is in the range of values quoted

in the literature (81,82). The resistance ratio pr, is defined by
0o =R /Rs , (4.9)

where R295 is the room temperature resistance of the specimen and R5 R

is the resistance of the specimen at 5.45 K. The temperature 5.45 K is
a little larger than the intrinsic transition temperature of vanadium,
thus making the resistance measurements at this temperature, instead
of at 4.2 X, alleviates using an applied magnetic field to drive the

specimen normal. Any magnetic field effects are thereby eliminated.
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KO depends only on the electronic structure of the metal independ-

ently of electronic scattering, and is given by (78)

Ko = 0.96 KL(O)/EO . (4.10)

AL(O) is the London penetration depth given by (78)

1 1
_ 30 Y2 7%c)

(ekBS) - (4.11)

XL(O)

Here, S is the area of the Fermi surface in k-space excluding zone
boundaries, h is Plank's constant, kB is Boltzmann's constant, Y is the
electronic specific heat coefficient in ergs cm 3 deg—z. Using the

values Radebaugh and Keesom (78) give for the different parameters, one

obtains

AL(O) = 398 & . (4.12)
Now Eo is the BCS or Pippard coherence length which is given by (78)

(0.18 kBS)

Eo =5w v ' (4.13)
co

where T is the intrinsic transition temperature. Once again using
co

values of the parameters given by Radebaugh and Keesom (78) and

TCo = 5.40 K, one obtains

£, = 445 = (4.14)

Returning to Equation (4.10) and using Equations (4.12) and (4.14), one

obtains

.,
ras
"

0.859 . (4.15)
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The values of ch(O), n, ¥, and p, are listed in Table I for all the

specimens used in this investigation.

The temperature dependence of the parameter Kl(t) is given by

K (8) =k (0) N + nefyth o, (4.16)
where
H (0)
Kl(o) pd _.._(&__ 5
/2—Hc(o)

The temperature dependent coherence length, &(T) of Eguation

(2.23), in terms of experimentally determined parameters, is given by

[
g (4.17)

Ty = TH OO
c2

Once KI(T) and £(T) are known, one can calculate the penetration depth
A(T) from Equation (2.26). Solving Equation (2.26) for A(T), one

obtains

A(T) = (T)  E(T) . (4.18)

There remains only two other parameters of interest; one is the

Pippard coherence length in the presence of electronic scattering which

is given by Equation (2.18),

A A
EhE *%




Table I. Important superconducting parameters.
Specimen Aging Hc2(0) fl Hc(o) % KI(O) p°
Number TS -0
Hours kOe kOe X 107" Q-cm
pure V
66 0 4.2 0.460 1.3 1.56 2.28 0.861
0.1 atomic percent carbon
97 0 4.7 0.483 qre2 1.90 2t 1.28
98 1 4.6 0.503 2 1.83 2. 71 1.19
100 5 4.6 0.480 L2 .75 271 1.09
103 10 4.6 0.499 152 .75 2070 1.10
0.2 atomic percent carbon
107 0 4.7 0.384 73 1.80 2.56 X.15
105 2 4.2 0.407 122 1.70 2,47 1.03
108 5 4.1 0.451 2 1.65 2.42 0.970
113 10 4.5 0.409 1 1.84 2.65 1.20
0.3 atomic percent carbon
57 0 50 0.564 Al 2.04 3.21 1.45
94 1/4 5.1 0.698 ) 1.94 3.28 1533
43 X2 4.9 0.543 )il b 2.05 315 1.46
92 3/4 5.0 0.504 el 2.05 321 1.46
45 1 Sl 0.548 Lol 207 3.34 1.49
46 2 4.8 0.461 %2 .97 3.08 1.36
64 5 4.3 0.508 1.1 1.84 2.76 1.20
0.4 atomic percent carbon
115 0 5.8 0.527 1 % 2.24 3.42 1.70
125 1/4 4.6 0.608 )i b 182 2.96 1.18
124 172 4.5 0.536 1.1 1.81 2.89 L7
123 3/4 5.2 0.660 1.3 2.0L 3.34 1.41
135 i 4.8 0.510 A2 1.91 2.83 P20
118 2 5.0 0.569 157 1.92 2.95 1.30
0.5 atomic percent carbon
116 0 5.6 0.543 2 2.19 330 163
131 1/4 4.9 0.485 2 2.00 2.89 1.40
3277 1/2 Sl D527 12 1.98 3.00 137
134 3/4 4.8 0.444 1.2 1.97 3.08 136
129 1 D3 0.439 12 2.23 312 1.68
119 2 5.0 0.759 Xs2 1.64 2.95 0.966
0.6 atomic percent carbon
EE7 0 el 0.642 1.2 1.92 3.06 130
120 2 4.7 0.576 12 179 260 1.14
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The other quantity of interest is the electronic mean free path, £.

The electronic mean free path is given as (78)

2
g0

he? p s
0

Using parameters given by Radebaugh and Keesom (78) this reduces to

3.50 X 10" A
i B 10744
pO

. (4.19)

The values of £, &, £(0), and A(0) are listed in Table II. The values

of K}(O) are listed in Table I.

C. Transition Temperature

A measure of the purity of a specimen is given by Qr. The

intrinsic transition temperature, which is the transition temperature

for infinite electronic mean free path, is determined from a least-

mean-squares fit to the equation (78) T

T(p)=qgo ' -T : (4.20)
[+ X T co

where 'I‘co is the intrinsic transition temperature and q is equal to
=3.7t K« A plot of Tc versus p;l extrapolated to zero yields a value
of (5.40 * 0.04) K for the intrinsic transition temperature of the
specimens used in this investigation, see Figure 17. The decrease of
Tc with impurity concentration arises because of the scattering of the

i electrons. 1In Table III are listed the values of %:, R , and Tc for

S.45

the specimens used in this investigation.
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Table II. More superconducting parameters.
Specimen 4 2 £0) A(0)
i ; ; ; ;
pure V
66 406 213 275 627
0.1 atomic percent carbon
97 273 170 260 720
98 294 177 263 713
100 321 187 263 J13
103 318 186 263 713
0.2 atomic percent carbon
107 304 181 260 666
105 340 193 2718 679
108 361 200 279 675
113 292 176 266 705
0.3 atomic percent carbon
57 241 157 252 809
94 263 166 250 820
43 240 156 255 803
92 240 156 252 809
45 235 154 247 825
46 257 163 258 795
64 292 176 272 751
0.4 atomic percent carbon
115 206 141 234 800
125 297 178 263 778
124 299 179 266 769
123 248 160 247 825
135 271 169 258 780
118 269 168 252 743
0.5 atomic percent carbon
116 215 145 238 785
131 250 160 255 737
127 255 163 250 750
134 257 163 258 795
129 208 142 245 764
119 362 200 252 743
0.6 atomic percent carbon
117 269 168 247 756
120 307 182 260 720




X
* ;-0 30 uor3adUMy e SE sanjexadwel uoT3TSuexl LT °InbTI

oo 800 900 00 200 oo.w.m

(M) 21

T e R D

o




i

Table III.

Important specimen parameters.

Specimen Py Ry s L ATc :
Wambisr mf) K K !
pure V |
66 25.43 0.460 5.28 0.08
0.1 atomic percent carbon
97 17.12 0.563 5.15 0.06
98 18.40 0.580 5.20 0.05
100 20.08 0.433 5.16 0.07
103 20.00 0.500 5a2l 0.06
0.2 atomic percent carbon
107 19.04 0.608 5.14 0.06
105 21.27 0.487 5.24 0.07
108 22.57 0.443 522 0.06
113 18.20 0.632 5.20 0.06 i
0.3 atomic percent carbon
57 15.13 0.469 5523 0.10
94 16.43 0.560 5.22 0.09
43 14.99 0.907 5.22 0.06
92 15.05 0.567 5.12 0.07
45 14.65 0.760 5.16 0.05
46 16.06 0.747 517 0.08
64 18.18 1.113 5.22 0.06
0.4 atomic percent carbon
115 12.92 2.194 5.06 0.06
125 18.56 0.688 5.23 0.06
124 18.73 0.736 5.23 0.04
123 15.48 0.615 5.21 0.08
135 16.99 0.788 5.15 0.05
118 16.88 0.756 5.18 0.07
0.5 atomic percent carbon i
116 13.43 0.896 513 0.07
131 15.69 0.614 5eld 0.07
127 16.03 0.954 5415 0.07
134 16.11 0.788 5.16 0.06 ;
129 13.05 1.046 5.07 0.05
119 22.68 0.594 5.22 0.06
0.6 atomic percent carbon
117 16.91 0.754 5.22 0.06
120 19.26 0.708 5.22 0.04
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The half width, ATC of the resistive transition used to calculate
the transition temperature is related to the uniformity of composition
of the superconductor. If the superconductor is of uniform composition,

the transition half width is narrow; for example, see Figure 11. Speci-

mens which were contaminated and of non-uniform composition showed very
broad transition half widths. A few specimens had half widths of 1 K
to 2 K. The half width becomes a useful parameter in deciding which
specimens are of uniform composition and should be studied further and
which specimens should be discarded. Specimens with ATC values in

excess of 0.1 K were not used in the present study.

D. Fluxoid Pinning

The pure, annealed vanadium specimen shows very low values of the
macroscopic pinning force density, Fp, as can be seen in Figure 18.
] The vanadium carbide precipitates act as pinning centers for the
fluxoids. This pinning of the fluxoids leads to greatly enhanced
values of FP which can be seen in Figure 18. The effectiveness of the
pinning centers in pinning the fluxoids is reflected quite clearly in
the ability of the superconductor to carry transport currents in a

lossless manner. Very weak pinning of the fluxoids, as represented by

the pure, annealed specimen, leads to strong magnetic field dependence
of the critical current density, Jc, as can be seen in Figure 19. 1In
the case of the 0.3 atomic percent carbon specimen, aged one hour, the
pinning centers are much more effective. The critical current density
is relatively magnetic field independent, except close to ch, as can

be seen in Figure 20. Figure 21 shows the critical current density as
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Figure 18. Macroscopic pinning force density as a function of reduced
magnetic field. Q - pure, annealed specimen, [J - the
0.3 atomic percent carbon specimen, aged one hour, and
A - the 0.4 atomic percent carbon specimen, aged zero
hours. All data are for 4.00 K.
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Figure 19. J_ vs. h for a pure, annealed specimen. O- 5.00 K,
rS -4.75K, & - 4.50 K, - 3.00K, and & - 2.00 K.
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Figure 20. Jo Vs. h for the 0.3 atomic percent carbon specimen, aged
one hour. Q- 5.00K, [O- 4.75k, A- 4.5 K, (3 -
3.50 K, and £ - 2.00 K.
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Figure 21. J, vs. h for the 0.4 atomic percent carbon specimen, aged
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a function of reduced magnetic field for the 0.4 atomic percent carbon
specimen aged zero hours. This specimen has the largest macroscopic
pinning force density at zero temperature. However, the critical
current density is much more magnetic field dependent than the critical

current densities for the 0.3 atomic percent carbon specimens.

The remaining specimens studied in this investigation give curves
for Fp and JC as a function of reduced magnetic field which lie between
the limiting curves for Fp and Jc as a function of h for the annealed

specimen and the 0.4 atomic percent carbon specimen discussed above.

Most of the specimens followed a scaling law of the form given by

Equation (2.63), i.e.,
m
F = ¢ H (T) £(h) . (4.21)
P p c2

The form factor is determined from the curve for the normalized macro-
scopic pinning force density as a function of the reduced magnetic field.
Figure 22 is a plot of the normalized pinning force density, Fp/Fpmax'

versus reduced magnetic field for the 0.3 atomic percent carbon speci-

men, aged one hour. The solid line is given by

; E
£(h) = h(1 - h)yZ . (4.22)

The different open and closed symbols are actual data points, the
agreement of the data with Equation (4.22) is quite good except for

the 5 K data. The macroscopic pinning force density is determined at

eight different temperatures in the range 2 K to 5 K. For each
;
P © temperature, the normalized pinning force density is calculated for

twelve to fifty data points. Since the data for more than one

T
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Figure 22. Normalized pinning force density, F Fpmax , Vvs. reduced
magnetic field, h, for the 0.3 atomic percent carbon
specimen, aged one hour. O-5.00 K, [O- 4.75 K,
A-4.50K, O~ 4.00K, @- 3.50K, B- 3.00K,
A - 2.50 K, and - 2.00 K.
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temperature gives symbols which overlap only one symbol, representing
an actual data point, is plotted in Figure 22. The exponent in the
scaling law, m, is determined from the log-log plot of the maximum
macroscopic pinning force density, Fpmax' as a function of the upper
critical magnetic field, ch. m is the slope of the line in Figure 23,

this plot is for the 0.3 atomic percent carbon specimen, aged one hour.

The slope is calculated from a least-mean-squares fit to

In(F ) =mln(H ) + C , (4.23)
pmax c2 1

where Cx is a cons;ant for fixed h. The values of the exponents, for
the specimens obeying the scaling law, vary from 1.1 to 1.8 with an
average value of 3/2. Fpmax at T = 0 K is extrapolated from the log-
log plot of the maximum pinning force density as a function éf the upper
critical magnetic field. Values of m, Cl, and Fpmax(o) are listed in

Table IV for the specimens used in this investigation.

The macroscopic pinning force density must be related to the
microscopic pinning parameters. In order to apply Labush's point
pinning theory, the number density of pinning centers must be less than
some critical value n*, Equation (2.69), which is approximately
T particles/cm’. The number density of pinning centers for the

specimens used in this investigation range from 3.3 X 16° particles

6 4.2 X 107 particles/cma; thus, Labush's theory is not applicable

Kramer's theory based on the elastic energy stored in th
lattice, see page 38, leads to
1
v

(1) hZ(1 - h)"? h

-
‘

F (h) = k H°
P c

P
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Table IV. Parameters relevant to the scaling law equation.

< C Fpmax m C
Specimen P dyngs/cma 1
Number x 10 5

115 c 14.8 31.7 1.6 12.13
120 11.2 ‘14.1 1.3 12.19
125 10.0 14.8 1.8 11.40
64 10.0 10.0 1.7 11.35
135 9.29 12.4 1.3 12.00
43 8.30 16.2 1.8 11.40
117 6.69 9.01 1.4 11.49
134 6.14 7.21 1.4 11.26
105 6.12 5.50 1.3 11.34
118 6.10 7.83 1.3 11.52
127 5.98 8.19 1e2 11.63
113 5.91 7.20 1.2 11.67
131 5.59 6.78 1.4 11.24
46 5.50 7.14 1.3 11.45
129 5.46 8.74 1.2 11.68
116 5.27 8.73 1.3 11.48
108 5.06 5.30 153 11.32
119 4.78 6.44 1.3 11.25
100 4.74 5.61 1.6 10.89
45 4.60 6.33 1.4 11.08
123 4.40 6.56 122 11.42
57 4.12 5.33 ‘1.4 10.88
92 3.99 5.45 1.3 11.10
94 3.71 5.27 1.3 11.08
103 3.25 4.10 1.2 11.08

Specimens which do not obey the scaling law

124 10.0
98 5.31 '
66 1.14 |
97 0.37
107 0.34

.._.‘, A
. A

e il




and

HS/Z(T)

F (h) = k -S2 h(l - h)? h>h 2
s § k2 14

whereas the data for the specimens investigated yield

1
= 3/2 £
Fp Cp ch (T) h(1 - h)

over the entire range of reduced magnetic fields, see Figure 22. Thus,
Kramer's theory fails to yield the correct form factor for vanadium
carbide precipitates in vanadium. The two parameters in his theory,

Ks and Kp, are independent of h. Also, Kramer's theory predicts that

7

2 .
5 (T) , whereas in

/2

this study, we find a different temperature dependence, i.e., sz (T) .

the temperature dependence of the scaling law is HZ

In order to calculate Fp from microscopic parameters, the concept
of an activation volume, Vb, was used, see Section II-D. This method

of calculating Fp leads to the observed temperature dependence, i.e.,

Ha/

czz(T); however, the Vp is dependent on the reduced magnetic field,

see Equations (2.89) and (2.92). Since the activation volume represents
the volume of an effective pinning center interacting with a fluxoid,
it is expected that the activation volume would change as the fluxoid
lattice parameter changes with increasing magnetic field. A dependence
of Vp on h is required to obtain agreement between our experimental
results and the calculation of Fp. The available data cannot, however,

shed any light on the actual dependence of Vb on h.




The specimens of this investigation that obey the scaling law have

macroscopic pinning force densities given by

/

2

1
2

3/2
FE =€ H T) h(1 - h . 4.24
B e (T) h( ) ( )

The constant, Cp, depends on the precipitate diameter and number density

of precipitates.

The metallurgical microstructure parameters of the specimens used
in this investigation are listed in Table V. The particles are measured
using the transmission electron micrographs. From the measured
diameters of the particles, the mean diameter is calculated. The
standard deviation in the mean particle diameter, oa' is also listed in
Table V. The mean surface area and the mean particle volume are
calculated from the mean particle diameter and an appropriately

correlated particle thickness.

The specimens which have temperature dependent form factors and do
not obey the scaling law have Fpmax(o) values obtained from a plot of
F (T) versus T, see Figure 24. The values of F x(0) for the speci-

pmax
mens which do not obey the scaling law are also given in Table IV.

All the specimens, which obey the scaling law, have macroscopic
pinning force densities given by

’ 1
Fp(h) = Kh(l - ©hZ ., (4.25)

1
Figure 25 shows Fp(h) as a function of h(1l - h)?2 for the 0.3 atomic
percent carbon specimen, aged one hour. The slopes of the lines in

Figure 25 give the value of K in Equation (4.25). The slopes are

R N rpE——

o —




Table V.

Metallurgical microstructure parameters.
various parameters describing the vanadium carbide precip-
itates are given here.

The value of the

X a o Surface Volume n
Specimen a P
Number < o Are? 22 702 16,3
A A X 10° A X 10" A X 10°°/cm i
0.1 atomic percent carbon
97 100 42.1
98
100 975 949 2.98 5.18 1.11
103 2632 2022 17.5 43.9 0.333
0.2 atomic percent carbon
107 150 0.039 0.015 30.4
105 622 248 0.741 0.700 6.47
108 618 442 0.945 1.10 4.45
113 897 479 1.69 2.11 2.54
0.3 atomic percent carbon 1
57 665 532 1.18 1.54 4.94
94 951 548 1.96 2.55 4.44 :
43 847 584 172 2.31 3.79 1
92 1116 580 2.57 3.53 2.30
45 1260 644 3.30 4.70 1.70
46 1622 903 5.60 9.50 0.90
64 1838 1105 7.40 13.8 0.40
0.4 atomic percent carbon
115 513 324 0.607 0.663 14.1
125 1387 884 4.38 7.42 1.31
124 2062 1488 10.4 22.4 0.538
123 965 689 2.28 3.26 3.02
135 1374 1382 6.11 12.5 0.934
118 1528 1151 5.89 11.1 1.09
0.5 atomic percent carbon
116 1009 735 2.53 3.82 3.02
131 1694 1256 7.16 14.4 1.04
127 1563 1196 6.24° 12.3 1.01
134 2543 2144 17.7 44.4 0.345
129 2218 1581 11.9 26.6 0.531
119 2454 1813 14.9 35.5 0.413
0.6 atomic percent carbon
117 2345 1557 12.9 28.4 0.529
120 2511 1408 13.3 28.4 0.505
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Figure 24.

p
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F vs. T for the 0.1 atomic percent carbon specimen, aged

one hour.
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determined from a least-mean-squares fit of Fp as a function of
1
h(l1 - h)2, fThe value of Cp in the scaling law Equation (2.24) is

determined from

xk=c u’? (4.26)
p c2

Cp is determined by a least-mean-squares fit of K as a function of

3/2

Cc2

H . A plot of K versus Hzgz is given in Figure 26 for the 0.3 atomic
percent carbon specimen, aged one hour. The constant, Cp, depends on
the size and the number density of the vanadium carbide precipitates

in the specimen. The CP values are listed in Table IV for the speci-

mens which obey the scaling law equation.

The specimens which obey the scaling law over most of the tempera-
ture range are represented by the 0.3 atomic percent carbon specimen,
aged one hour. The normalized pinning force density curve for T = 5K

in Figure 22 shows a temperature dependent form factor.

Figure 27 is a plot of the normalized pinning force density as a
function of reduced magnetic field for the 0.3 atomic percent carbon
specimen, aged zero hours. The temperature dependence of the form

factor at the different temperatures between 2 K and 5 K is apparent.

This temperature dependence of the form factor is observed for
most of the specimens. However, temperature dependent form factors are
usually only observed at the highest experimental temperatures of
4.75 K and/or 5.0 K for the specimens which are said to scale. For

example, Figure 22 shows a temperature dependent form factor at only

5.0 K.
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K vs. Hcé for the 0.3 atomic percent carbon specimen, aged
one hour.
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Normalized pinning force density vs. reduced magnetic field
for the 0.3 atomic percent carbon specimen, aged zero hours.
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The temperature dependence of the form factor suggests that some

temperature dependent superconducting parameter is being matched to
some property of the specimen's microstructure at low temperatures but
not at high temperatures. An obvious superconducting parameter that
could be important is £(T), the temperature dependent coherence length.
Twice £(T) is a length used to describe the diameter of a fluxoid.
Thus at high temperatures fluxoids have a much larger diameter than at

-

low temperatures since

¢

0

g = 2m H (T)
. c2

One should note, however that the density of superconducting electrons
does not abruptly change at the boundary of the fluxoid but changes
continuously, reaching zero at the very center of the fluxoid. If the
pinning centers in the specimen have diameters comparable to ZE(TS),

one would expect that when a fluxoid passes through the normal pinning
center a maximum reduction of energy would occur. For pinning centers
significantly smaller than 2&(T) the energy reduction would be much
smaller. In addition, if the fluxoid must bend to pass through a
pinning center, the bending energy increase must be balanced against

the energy saved by passage through the pinning center. Hence, it might

be expected that pinning centers with diameters, a, such that a > 2&(T)

would be the most important contributers to the pinning. Furtheimore,
it might be expected that some critical number of such pinning centers
per unit length of fluxoid might be required to achieve optimum

pinning.
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The present experimental results can be shown to be consistent

with the ideas presented above. The temperature, Ts' at which the
specimen first obeys the scaling law is determined for each specimen.
All the specimens that scale, scale at all temperatures below Ts. The
value of 2E(Ts) is computed for each of the specimens. The value of
2€(Ts) is located on the particle distribution histograms for each of
the specimens and the total number of particles with diameters greater
than ZE(TS), npz' is determined. Figures 28, 29, and 30 are histograms
for specimens that have received no heat treatment. The number of
fluxoids is determ%ned at 0.7 ch(Ts) for each specimen. This value of
the magnetic field is used because the peak in the Fp versus h plots
occurs at h = 0.7. The number of pinning centers per cm length of

fluxoid is calculated from

n ¢
N 2 0

= . (4.29)
p 0.7 Hc (Ts)

In Equation (4.29), 0.7 ch(Ts)/¢o is the number of fluxoids per centi-
meter squared and np2 is the number of pinning centers per em® with

diameters greater than 2£(Ts).

The number of pinning centers/cm length of fluxoid, Np' is
determined for each specimen at TS. The exact value of Np—critical is
difficult to obtain for several reasons: First the temperature at
which a specimen first obeys the scaling law is known, at best, only to
0.25 K or 0.5 K. Thus, there is an error associated with the value
ZE(TS) used. This error may be large for higher values of Ts since at

higher temperatures £(T) increases rapidly. Secondly, the histograms
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Figure 28. Histogram showing the distribution of particle diameters.
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have an interval of 200 3 width, thus there is an error in determining
n . since it is very likely that ZE(TS) may come in the middle of an
interval. Third, the criterion that the particle has to have a
diameter 2 2£(Ts) leads to deleting from np2 particles which, although
not of optimum size, may contribute to the pinning. As an example of
how to apply the concepts of a critical particle diameter and a
critical number of pinning centers per cm length of fluxoid, consider
the zero hour aged specimens. In Figure 28 both the 0.1 atomic percent
and the 0.2 atomic percent carbon specimens experimentally are shown
not to obey the ;caling law at any of the temperatures used in the
course of this investigation. All the particles in these two specimens
are in the O to 200 R diameter interva;. The minimum value of 2€(Ts)
is 2§(0), this is approximately 500 i,. Looking at the histograms in
Figure 28 one will note that neither of these specimens have particles

with diameters > 2£(0), thus Np = 0 and the specimen would not be

expected to scale at any temperature. Figure 30a is the histogram for
the 0.5 atomic percent carbon specimen. This specimen obeys the
scaling law equation at 4.75 K and below. The value of 2£(4.75 K) is
approximately 1400 &, see the arrow in Figure 30a. Ffom the histogram
and Table V, ong can determine there are approximately 6.2 X 10"°
particles/cm® with diameters greater than 1400 &. The number of
fluxoids at Fpmax(4'75 K) is approximately 2.6 X 10°/cm?, thus Np =

2.4 x 10°® particles/cm length of fluxoid.

Table VI tabulates the values of TS, 0y Np, and ZC(TS) for all

P2

the specimens that obey the scaling law for any of the temperatures used.




Table VI. Critical parameters associated with specimens which obey the
scaling law.
Specimen s np2 np = E(Ts)
Mupbax K x 10'%/cm3 x 10%/cm fluxoid x 10°/cm? A
0.1 atomic percent carbon
100 4.50 2.54 1.53 1.66 630
103 4.75 2.22 1.26 1.77 750
: 0.2 atomic percent carbon
105 4.50 1.33 0.33 4.02 600
108 4.75 1.78 0.71 2.50 780
113 4.50 5.30 1.26 4.20 600
0.3 atomic percent carbon
57 3.50 9.36 0.85 11.0 400
94 4.00 18.9 2.52 7.50 460
43 4.75 4.14 1.48 2.00 800
92 4.75 4.68 1.87 2.50 810
45 4.75 4.77 2.07 1.77 800
46 4.50 5.48 1.80 3.04 600
64 4.50 2.86 1.28 3.03 600
0.4 atomic percent carbon
115 4.50 3.91 0.91 4.30 610
125 4.00 6.65 0.94 7.10 480
124 3.50 4.67 0.47 10.0 400
123 4.00 12.1 1.58 7.65 450
135 4.00 4.58 0.62 7.40 470
118 4.75 3.98 1.46 2.72 770
0.5 atomic percent carbon
116 4.75 6.22 2.37 2.62 760
131 5.00 2.18 2.26 0.97 1200
127 4.00 5.40 0.71 7.65 460
134 4.50 2.12 0.49 4.30 460
129 4.00 4.13 0.52 8.00 450
119 4.75 2.47 0.90 2.75 780
0.6 atomic percent carbon
117 4.75 3.23 1.20 2.70 740
120 4.50 4.15 0.98 4.25 610




The interesting result is that, independently of Ts, the value of
Np is about 1.3 x 10° particles/cm length of fluxoid with a standard
deviation of 7 X 10° particles/cm length of fluxoid. Hence, for the
vanadium-vanadium carbide system investigated, one can say with reason-
able certainty that ~ 10® pinning centers/cm length of fluxoid and

<

az?2 (Ts) are required for the specimen to obey the scaling law.

As the temperature of the specimen is reduced ch(T) is increased,
2E(T) is decreased and the number of fluxoids to be pinned at a given
value of h increases. 1In view of these facts and the immediately pre-
ceding discussion, one might conclude that with certain kinds of
distributions of pinning centers that the scaling law could break down
at a low temperature if Np ~ 10® was not maintained because of the
increased fluxoid density. However, this was never observed in the
present investigation. The reason for this lies in the fact that the
vanadium carbide particle size distributions were always peaked at
values of a considerably Selow ZE(TS). Hence, as T is reduced 2&{(T) is
reduced and more particles are available to pin the additional fluxoids.
A check of this idea was made by calculating Np for T = 3.00 K for all
specimens that scgle at 3.00 K. The result was that there were always
more than 10° particles/cm length of fluxoid available for pinning. The

average result was that ~ 1.2 X 10°® particles/cm length of fluxoid were

available at this temperature.




V. CONCLUDING REMARKS

A. Summary

The pinning centers used in this investigation are disc shaped
vanadium carbide precipitates. The precipitates have a thickness of
only a few atomic layers. The vanadium carbide precipitates on the
{310} habit planes. The precipitate is coherent with the vanadium
lattice for most of the specimens used in this investigation. The
number density and size of the pinning centers is changed by heat

treatment.

The specimens have low K values ranging from 1.56 to 2.24., These

low K Type II superconducting specimens obey a scaling law of the form

3 1
= —h)2
Fp = cp ng(T) h(1-h) 5 (5.1)

The temperature dependence of the macroscopic pinning force density,

FP’ is given by the HEZ(T) term. The constant, Cp, is a function of
the precipitate diameter and the number density of the pinning centers.
The scaling law is obeyed at a temperature, Ts, and below. There seems
to be two important criteria which must be fulfilled in order for a
specimen to obey the scaling law: The first is that particles which have
diameters greater than 2£(Tg) are likely to be the most important.

Secondly, there is a critical number of pinning centers/cm length of

fluxoid. If Ny is greater than this critical value the specimen will

likely obey the scaling law equation.




The temperature dependence in Equation (5.1) and the form factor

1
observed for these specimens, h(1l-h)2, differ from those predicted by

either Labusch's point pinning theory or Kramer's line pinning theory.
In order to calculate the macroscopic pinning force density the concept
of an activation volume is used. This volume is the effective volume
of an effective pinning center for each fluxoid which would accomplish
the same pinning as the sum of all the real individual pinning centers.
The fluxoid interacts with the pinning centers in this volume in such

a manner that the interaction is between the fluxoid and the effective
pinning center. ?rom this analysis, one obtains the distance between
effective pinning centers in terms of reduced magnetic field and speci-
men parameters. Since the distance between effective pinning centers
is much larger than the distance between actual pinning centers, the

fluxoid is actually pinned by a great number of pinning centers.

B. Comments on Future Work

Two important parameters in the discussion of superconductors are
the transition temperature and the upper critical magnetic field. A

method for determining Hc for zero transport current would provide a

2

check on the values of Hc used in this investigation. Ultrasonic

2

attenuation techniques may be used to determine Hc Early attempts

X
to use ultrasonic techniques proved unsuccessful because reliable
acoustic bonds could not be made. Also the electronic mean free path

is too short in the specimens used in this investigation. However,

ultrasonic attenuation techniques should not be ruled out automatically

for the future.
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During the course of this investigation, the magnetic induction
is considered numerically equal to the applied magnetic field intensity,
see Section II-B. An interesting experiment would be to measure the
magnetization of the superconducting specimens. From the magnetization
measurements, one could readily determine how closely the specimens
approximate an ideal Type II superconductor. Also, the magnetization
measurements provide another method for determining the upper critical

magnetic field.

The 0.3 atomic percent carbon specimens provide a convenient group
of superconducting specimens to investigate because they show moderately
strong pinning for the vanadium carbide-vanadium system. This atomic
percent carbon would be interesting to study as a function of K. By
alloying vanadium with some appropriate metal, the electronic mean free
path can be greatly reduced while the pinning centers remain vanadium
carbide precipitates. This would allow one to observe the form factor

as a function of K and see if the

1
f(h) = h(1-h)? (5.2)

dependence is a property of the low Kk vanadium, or a property of the

platelet shaped vanadium carbide precipitates.

Another possibility for determining if the form factor is a property
of the matrix or the pinning center would be to use vanadium foil with
pinning centers of a different geometry, say spherical particles. If
the sperical particles prove to be strong pinning centers, the number
density of the pinning centers may be able to be reduced to the point

where Labusch's point pinning theory may be applicable.

o e
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A third method for investigating the form factor would be to
study the pinning properties of vanadium as a function of dislocation
density. The dislocation density can be readily changed by applying
different amountcs of cold work. However, the characterization of
the dislocations would not be as clear cut as for precipitates. Meas-
urements were made on an as received piece of vanadium. The pinning
in this specimen is primarily due to dislocations. The form factor
observed for this specimen is h(l—h)%. A more complete set of data
on the pinning due to dislocations is needed to substantiate the form
factor. However, the preliminary result suggest that the form factor

observed during the course of this experiment may be due to the low

K vanadium matrix and not the specific type of pinning center present.
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APPENDICES

A. Temperature Regulation of the Vacuum Can

Since the transition temperature of vanadium is above the critical
temperature of liquid helium, the specimen block is inside a vacuum
can. A block diagram of the temperature control apparatus appears in
Figure 31. An excellent discussion of temperature regulation by
Forgan (83) provides many concepts useful in the construction of the

temperature regulation circuit.

A WaveTek Model 112 oscillator serves a dual purpose; first, the
oscillator provides a 1000 Hz signal to the ac bridge and, second, the
oscillator provides a reference signal to the Keithley Model 840 lock-
in amplifier. The oscillator signal to the ac bridge has to be of
small amplitude to insure a minimum of self heating of the 56§ carbon
resistor, which is used as the regulating thermometer. Figure 32a
is the schematic for the ac bridge. The ac bridge is basically a
Wheatstone bridge with the regulating thermometer as one leg of the
bridge. By using an ac bridge and lock-in amplifier, problems due to
thermal emfs and noise are reduced (84). When the bridge unbalances,
the error signal is sent to the lock-in amplifier. Here, the error
signal is amplified 10" times and phase sensitive detected to produce
a dc output proportional to the input error signal. The lock-in ampli-
fier's phase is adjusted by unbalancing the bridge in a known direction
in order to produce a large error signal. The phase of the lock-in

amplifier reference channel is then adjusted to maximize the detected
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Figure 31. Block diagram of the temperature regulation circuit.
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Figure 32. Temperature control circuit. a) ac bridge. b) integrator/
power amplifier. Note all the variable resistors are ten
turn potentiometers. The fixed resistors are either wire
wound or metal film.
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error signal, and to give it the correct sign. This insures that the
error signal produced by the bridge, operating around its balance point,
is not only proportional to the amount of unbalance, but also of the
proper sign. The sign of the detected (rectified) error signal deter-
mines whether heating (+ sign) or cooling (- sign) is required to return
the bridge to balance. The time constant of the lock-in amplifier is
typically 3 or 10 milliseconds. The short time constant allows the
lock-in amplifier to follow rapid changes in the error signal. The
rectified signal from the lock-in amplifier is sent to an electronic
integrator wnich smooths the signal, and provides the necessary time

lag in the circuit, see Figure 32b. The integrator, which has a time
constant of 165 setonds, sums and averages the signal from the lock-in
amplifier and supplies a slowly varying signal to the power amplifier.
The power amplifier drives the current supplied to the heater. The
maximum current available from the power amplifier is 100 milliamps.

The heater is a 40§ piece of Nicrome wire epoxied to the specimen block.

The desired temperature is obtained by adjusting the resistance
in one arm of the bridge. The bridge will then be unbalanced. The
temperature control circuit will cause the specimen block to either
heat or cool untii the bridge is balanced once more. The temperature

control circuit, then, maintains the bridge balance by constantly

adjusting the heater power to insure a constant value of the resistance

of the regulating thermometer. The actual temperature of the specimen
block is read from the recording thermometer. This alleviates the

necessity of calibrating the carbon regulating thermometer. The major
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difficulty with calibrating the regqulating thermometer is that the re-
sistance of the carbon resistor is cycle dependent and the thermometer
must be calibrated each time the resistor is cooled to liquid helium
temperature (85). The recording thermometer can not be used as the
regulating thermometer for the ac bridge because the germanium resis-
tance thermometers are magnetic field dependent. Thus, the temperature
of the system must be set in zero applied magnetic field. The carbon
resistor which is not magnetic field dependent allows the temperature
control circuit to maintain the desired temperature regardless of the

external magnetic field present.

The temperature, as determined from the recording thermometer,
is not dependent on the liquid helium bath temperature. Although the
temperature difference between the liquid helium bath and the specimen
block is not critical, the smaller the temperature difference the less
the amount of power dissipated in the liquid helium bath. For best
temperature regulation, the liquid helium bath temperature should be
0.5 K below the operating temperature of the specimen block. The
pressure in the vacuum can is adjusted so that 8 to 12 mA through the
heater are required to maintain the specimen block at the desired
temperature. With.this amount of helium transfer gas in the vacuum
can the temperature of the specimen block may be maintained to within
50 mK of the desired temperature during a data run, as long as there

is less than 5 mW of power dissipated in the specimen.




B. Magnet Systems and Calibrations

In the course of this investigation, one of the two following magnet
systems is used. The first magnet system is an American Magnetics, Inc.
(AMI) multifilamentary NbTi superconducting coil rated at 10 kOe at 40
amperes. A Hewlett-Packard Model 6228A dc power supply is used to
operate this AMI superconducting coil. The power supply is capable of
an output of 30 A at 40 volts. A 0.02497Q resistor is placed in series
with the superconducting coil and the voltage across the resistor is

used to determine the magnetic field.

The second magnet system is an AMI multifilamentary NbTi super-
conducting coil rated at 75 kOe at 79.2 A. A Didcot Instrument Company,
Ltd., Model DPSA/100/4.5/1 power supply provides the current for the
AMI 75 kOe system. An internal resistor of 10 m2 was provided for
output current monitoring. This resistor is replaced with an external
resistor of 0.2649{0 in series with the 75 kOe coil. The external
resistor allows more current sensitivity at the low magnetic fields

used for this investigation.

Both magnetic systems are calibrated using the NMR proton reso-
nance. The NMR frequencies are measured with a Hewlett-Packard Model
524L counter/model 5253B converter. The voltage across the current
sense resistor which is related to the magnetic field is monitored
with a five place Keithley Model 190 digital multimeter. All data are

least-mezn-squares fitted to a linear relation

H=av +b . (B.1)




The values of a and b depend on whether the magnetic field is being
swept up or down. The magnetic fields set at the beginning of each
data run are dialed up from zero, thus the appropriate values of a

and b are for up-sweeps. These values are listed in Table VII. The

uncertainty in the magnetic field is # 0.2 Oe.

Table VII. Values of a and b Appearing in Equation (B.1l).

Coil a(k0e/V) b (kOe) Remarks

10 kOe 10.591 0.004 Voltage across
AMI 0.02497Q resistor
75 kOe 3.6027 -0.0007 Voltage across
AMI . 0.2649Q resistor
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